
SANDIA REPORT
SAND2015-6778
Unlimited Release
Printed August 2015

High Performance Computing - Power
Application Programming Interface
Specification
Version 1.1
James H. Laros III, David DeBonis, Ryan Grant, Suzanne M. Kelly,
Michael Levenhagen, Stephen Olivier, Kevin Pedretti

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

D
E

P
A

R
TMENT OF EN

E
R

G
Y

•� •�U
N

I
T

E
D

STATES OF A
M

E
R

I
C

A

2

SAND2015-6778
Unlimited Release

Printed August 2015

High Performance Computing - Power Application
Programming Interface Specification

Version 1.1

James H. Laros III, David DeBonis, Ryan E. Grant,
Suzanne M. Kelly, Michael Levenhagen, Stephen Olivier, Kevin Pedretti

Center for Computing Research
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-1319

, es ne e ln einlrdo a sg k m rdiv ,l, el or , li tm era y j ve p,klb sd o,h tj @sandia.gov

Abstract

Measuring and controlling the power and energy consumption of high performance computing
systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21,
19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning
to emerge in some production systems, which is very welcome. To be most effective, a portable
interface to measurement and control features would significantly facilitate participation by all
levels of the software stack. We present a proposal for a standard power Application Programming
Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces
to the input from the computer facility manager.

3

Acknowledgment

Support for this work was provided through the Advanced Simulation and Computing (ASC) pro-
gram funded by U.S. Department of Energy’s National Nuclear Security Agency. We wish to thank
our colleagues, Steve Hammond, Ryan Elmore, and Kris Munch at the National Renewable En-
ergy Laboratory (NREL) for their contributions to the use case model which was the progenitor of
this work. This effort was greatly enhanced by interactions with staff throughout Sandia as well as
many external organizations.

Prior to the first open release of this specification a select group of individuals agreed to re-
view an early draft of the specification and provide feedback. We would like to recognize the very
significant contributions these individuals made and thank them for their time and efforts. The
following individuals participated in an all day face-to-face review of the specification and pro-
vided written feedback (listed in alphabetical order): David Jackson (Adaptive Computing), Steve
Martin (Cray), Indrani Paul (AMD), Phil Pokorny (Penguin Computing), Avi Purkayastha (Na-
tional Renewable Energy Laboratory), Muralidhar Rajappa (Intel), and Jeff Stuecheli (IBM). The
following individuals provided written feedback of the specification (listed in alphabetical order):
Dorian Arnold (University of New Mexico), Natalie Bates (EEHPC), and Chung-Hsing Hsu (Oak
Ridge National Laboratory). We hope to continue these important collaborations and develop new
ones in an effort to represent and serve the HPC community as best we can.

4

Contents

1 Introduction 13

1.1 Background . 13

1.2 Motivation . 14

1.3 Use Case Development . 14

1.4 Security Model . 16

2 Theory of Operation 17

2.1 Overview . 17

2.2 Power API Initialization . 17

2.3 Roles . 17

2.4 System Description . 18

2.5 Attributes . 21

2.6 Metadata . 22

2.7 Thread Safety . 22

3 Type Definitions 23

3.1 Opaque Types . 23

3.2 Globally Relevant Definitions . 23

3.3 Context Relevant Type Definitions . 23

PWR CntxtType . 24

PWR Role . 25

3.4 Object Relevant Type Definitions . 25

PWR ObjType . 25

5

3.5 Attribute Relevant Type Definitions . 26

PWR AttrName . 26

PWR AttrDataType . 27

PWR AttrAccessError . 27

3.6 Metadata Relevant Type Definitions . 27

PWR MetaName . 28

3.7 Error Return Definitions . 28

3.8 Time Related Definitions . 29

PWR TimePeriod . 30

3.9 Statistics Relevant Type Definitions . 30

PWR AttrStat . 30

PWR ID . 30

3.10 OS Hardware Interface Type Definitions . 31

PWR OperState . 31

3.11 Application OS Interface Type Definitions . 31

PWR RegionHint . 31

PWR RegionIntensity . 32

PWR SleepState . 32

PWR PerfState . 33

4 Core (Common) Interface Functions 35

4.1 Initialization . 35

Function Prototype PWR CntxtInit() . 36

Function Prototype for PWR CntxtDestroy() . 36

4.2 Hierarchy Navigation Functions . 37

Function Prototype for PWR CntxtGetEntryPoint() 37

6

Function Prototype for PWR ObjGetType() . 38

Function Prototype for PWR ObjGetName() . 38

Function Prototype for PWR ObjGetParent() . 39

Function Prototype for PWR ObjGetChildren() . 39

Function Prototype for PWR CntxtGetObjByName() 40

4.3 Group Functions . 40

Function Prototype for PWR GrpCreate() . 41

Function Prototype for PWR GrpDestroy() . 41

Function Prototype for PWR GrpDuplicate() . 41

Function Prototype for PWR GrpUnion() . 42

Function Prototype for PWR GrpIntersection() . 42

Function Prototype for PWR GrpDifference() . 43

Function Prototype for PWR GrpGetNumObjs() . 43

Function Prototype for PWR GrpGetObjByIndx() . 44

Function Prototype for PWR GrpAddObj() . 44

Function Prototype for PWR GrpRemoveObj() . 45

Function Prototype for PWR CntxtGetGrpByName() 45

4.4 Attribute Functions . 46

Function Prototype for PWR ObjAttrGetValue() . 46

Function Prototype for PWR ObjAttrSetValue() . 47

Function Prototype for PWR StatusCreate() . 48

Function Prototype for PWR StatusDestroy() . 48

Function Prototype for PWR StatusPopError() . 49

Function Prototype for PWR StatusClear() . 49

Function Prototype for PWR ObjAttrGetValues() . 50

Function Prototype for PWR ObjAttrSetValues() . 51

7

Function Prototype for PWR ObjAttrIsValid() . 52

Function Prototype for PWR GrpAttrGetValue() . 53

Function Prototype for PWR GrpAttrSetValue() . 54

Function Prototype for PWR GrpAttrGetValues() . 55

Function Prototype for PWR GrpAttrSetValues() . 56

4.5 Metadata Functions . 57

Function Prototype for PWR ObjAttrGetMeta() . 58

Function Prototype for PWR ObjAttrSetMeta() . 59

Function Prototype for PWR MetaValueAtIndex() 60

4.6 Statistics Functions . 61

Function Prototype for PWR ObjCreateStat() . 62

Function Prototype for PWR GrpCreateStat() . 63

Function Prototype for PWR StatStart() . 63

Function Prototype for PWR StatStop() . 64

Function Prototype for PWR StatClear() . 64

Function Prototype for PWR StatGetValue() . 65

Function Prototype for PWR StatGetValues() . 65

Function Prototype for PWR StatGetReduce() . 66

Function Prototype for PWR StatDestroy() . 67

4.7 Version Functions . 67

Function Prototype for PWR GetMajorVersion() . 68

Function Prototype for PWR GetMinorVersion() . 68

4.8 Big List of Attributes . 68

4.9 Big List of Metadata . 70

5 High-Level (Common) Functions 75

8

5.1 Report Functions . 75

Function Prototype PWR GetReportByID() . 75

6 Role/System Interfaces 77

6.1 Operating System, Hardware Interface . 77

6.1.1 Supported Attributes . 78

6.1.2 Supported Core (Common) Functions . 80

6.1.3 Supported High-Level (Common) Functions . 80

6.1.4 Interface Specific Functions . 80

Function Prototype PWR StateTransitDelay() . 80

6.2 Monitor and Control, Hardware Interface . 82

6.2.1 Supported Attributes . 82

6.2.2 Supported Core (Common) Functions . 84

6.2.3 Supported High-Level (Common) Functions . 84

6.2.4 Interface Specific Functions . 84

6.3 Application, Operating System Interface . 85

6.3.1 Supported Attributes . 85

6.3.2 Supported Core (Common) Functions . 86

6.3.3 Supported High-Level (Common) Functions . 87

6.3.4 Interface Specific Functions . 87

Function Prototype PWR AppTuningHint() . 87

Function Prototype PWR SetSleepStateLimit() . 88

Function Prototype for PWR WakeUpLatency() . 88

Function Prototype PWR RecommendSleepState() 89

Function Prototype for PWR SetPerfState() . 90

Function Prototype for PWR GetPerfState() . 91

9

Function Prototype for PWR GetSleepState() . 91

6.4 User, Resource Manager Interface . 92

6.4.1 Supported Attributes . 92

6.4.2 Supported Core (Common) Functions . 92

6.4.3 Supported High-Level (Common) Functions . 92

6.4.4 Interface Specific Functions . 92

6.5 Resource Manager, Operating System Interface . 93

6.5.1 Supported Attributes . 93

6.5.2 Supported Core (Common) Functions . 95

6.5.3 Supported High-Level (Common) Functions . 95

6.5.4 Interface Specific Functions . 95

6.6 Resource Manager, Monitor and Control Interface . 96

6.6.1 Supported Attributes . 96

6.6.2 Supported Core (Common) Functions . 98

6.6.3 Supported High-Level (Common) Functions . 98

6.6.4 Interface Specific Functions . 98

6.7 Administrator, Monitor and Control Interface . 99

6.7.1 Supported Attributes . 99

6.7.2 Supported Core (Common) Functions . 101

6.7.3 Supported High-Level (Common) Functions . 101

6.7.4 Interface Specific Functions . 101

6.8 HPCS Manager, Resource Manager Interface . 102

6.8.1 Supported Attributes . 102

6.8.2 Supported Core (Common) Functions . 102

6.8.3 Supported High-Level (Common) Functions . 102

6.8.4 Interface Specific Functions . 102

10

6.9 Accounting, Monitor and Control Interface . 103

6.9.1 Supported Attributes . 103

6.9.2 Supported Core (Common) Functions . 105

6.9.3 Supported High-Level (Common) Functions . 105

6.9.4 Interface Specific Functions . 105

6.10 User, Monitor and Control Interface . 106

6.10.1 Supported Attributes . 106

6.10.2 Supported Core (Common) Functions . 108

6.10.3 Supported High-Level (Common) Functions . 108

6.10.4 Interface Specific Functions . 108

7 Conclusion 109

References 110

Appendix

A Topics Under Consideration for Future Versions 113

B Change Log 115

11

12

Chapter 1

Introduction

Achieving practical exascale supercomputing will require massive increases in energy efficiency.
The bulk of this improvement will likely be derived from hardware advances such as improved
semiconductor device technologies and tighter integration, hopefully resulting in more energy ef-
ficient computer architectures. Still, software will have an important role to play. With every
generation of new hardware, more power measurement and control capabilities are exposed. Many
of these features require software involvement to maximize feature benefits. This trend will allow
algorithm designers to add power and energy efficiency to their optimization criteria. Similarly,
at the system level, opportunities now exist for energy-aware scheduling to meet external utility
constraints such as time of day cost charging and power ramp rate limitations. Finally, future ar-
chitectures might not be able to operate all components at full capability for a range of reasons
including temperature considerations or power delivery limitations. Software will need to make
appropriate choices about how to allocate the available power budget given many, sometimes con-
flicting considerations.

For these reasons, we have developed a portable API for power measurement and control. This
Power API provides multiple levels of abstractions to satisfy the requirements of multiple types of
users [9]. The remainder of this document describes the details of this Power API specification.

1.1 Background

We draw our inspiration from efforts such as the MPI forum’s1 process. We seek to develop a de
facto standard, led by a neutral national laboratory, which is funded by a neutral federal agency.
Community involvement is critical to the effort. The laboratory team has been garnering participa-
tion by making presentations at workshops and operational group meetings. We desire community
participation from university and other researchers, as well as HPC practitioners. Concurrent with
the specification development, the authors are creating a reference implementation comprising a
subset of the overall API functionality. This task is important to ensure that the specification is
usable. The ultimate goal, however, is that vendors of the hardware and software components
provide their own implementations. It is likely that some portion of these functions have already
been written by vendors, but with slightly different calling arguments. For portability sake, we are

1http://www.mpi-forum.org

13

hopeful that the specific implementations can be melded to this proposed community API.

1.2 Motivation

The introductory paragraph above, offers a few examples where a Power API would be useful.
This document’s abstract provides references to a small subset of the current research activities
that would benefit from a community-adopted power API. Additional, more fleshed out examples
are described in the appendices of the Power/Energy Use Cases for High Performance Computing
document [9]. To provide the proper mindset for reading this document, we offer the following
list as well.

• A job is entering a checkpoint phase. The application requests a reduced processor frequency
during the long I/O period.

• A developer is trying to understand frequency sensitivity of an algorithm and starts a tool
that analyzes performance and power consumption while the job is running.

• Once an application’s power signature is analyzed, future job submissions give power hints
to the resource manager.

• A data center has a maximum of capacity of nn MW. One HPC system is down for extended
maintenance. Other systems can have a higher maximum power cap.

• For electric bills based on peak usage periods, determine a maximum HPC load that mini-
mizes loss of HPC use. Then direct the scheduler to enforce that peak usage.

1.3 Use Case Development

The Power/Energy Use Cases for High Performance Computing document [9] identifies the re-
quirements for the Power API. Rather than a list, the requirements are specified as formal use
cases employing the ISO/IEC 19501:2005 Unified Modeling Language (UML) standard, which is
described in the reference manual by Booch, et al. [2]. While the term use case has come to be
almost synonymous with scenario, the standard defines a use case model. The use case model does
include scenario-like requirement specifications, but it also clearly identifies the roles and scope
of the requirements. For this document, the key concepts from the use case model are actor and
system. Each identified actor plays a distinct role in using the power API. Actors can be persons,
other systems, or something else (e.g. cron, asynchronous event, etc.). For the Power API use
case model, an HPC computer is broken down into logical systems. By breaking down the re-
quirements into this use case model, we can clearly see the demarcation points requiring an API
between external actors and each system. And by subsequently viewing systems as actors to the
other systems, we obtain the complete set of necessary interfaces.

14

Actor System

Facility
Manager

Facility
Hardware

HPCS
Manager

HPCS
Manager

HPCS
Resource
Manager

HPCS
Resource
Manager

HPCS
Monitor &
Control

HPCS
Monitor &
Control

HPCS
Operating

System

HPCS
Operating

System

HPCS
Hardware

HPCS User

HPCS Admin

HPCS
Accounting

HPCS
Application

Figure 1.1: Top Level Conceptual Diagram representing the culmination of all Use Case Diagrams
covered.

The specific actor/system pairs used for the power API are shown in Figure 1.1. The external
actors are shown on the left portion of the diagram. Systems are shown as rectangles. The four
systems conjoined with the actor symbol also serve as actors for some use cases. The ten sections
within Chapter 6 provide function specifications for the ten actor/system pairs (Role/System pairs
in the specification). The two missing interfaces are Facility Manager to Facility Hardware and
Facility Manager to HPCS manager. These were included in the use case model to identify the
boundaries of the specification and recognize important points of information input.

15

1.4 Security Model

The specification assumes traditional hardware (e.g. protection rings) and operating system sup-
port for access control. Implementations should only need traditional restrictions based on au-
thenticated individual identity and/or the groups to which the individual belongs. A super user is
likely needed as well. Depending on the implementation, the context structure (Section 3.3) may
be sufficiently protected to allow for secure storage of access information. Future releases of the
specification will address security and policy considerations in more detail.

16

Chapter 2

Theory of Operation

2.1 Overview

This section discusses many of the foundational concepts leveraged throughout the Power API
specification. It should be noted that many terms commonly used when discussing object oriented
languages are used in this section and the document as a whole. The use of these terms in no way
implies that the Power API specification must be implemented using an object oriented language.
We have attempted to achieve two goals, listed in order of priority: 1) programmer portability,
where the programmer is the user of the API, and 2) the latitude of the implementor who will often
become the user of the API benefitting from our first priority.

2.2 Power API Initialization

Using any of the Power API interfaces requires initialization. Initializaton returns a context. In
the specification, the context is defined as an opaque pointer. This approach was taken to allow
the maximum amount of flexibility to the implementor. The context returned will contain (act
as the entry point to) the system description that is exposed to the user, all policy and privilege
information, basically everything the user of the API requires to perform the functionality specified
by the API. The system description is not required to be changed or updated during the life of a
specific context. Initialization is accomplished by calling PWR_CntxtInit() (section 4.1).

2.3 Roles

The Power API specification leverages the concept of Roles. Roles represent the different types of
users that exist which include:

• Application The application or application library executing on the compute resource. May
also include run-time components running in user space.

• Monitor and Control Cluster management or Reliability Availability and Serviceability
(RAS) systems, for example.

17

• Operating System Linux or specialized Light Weight Kernels which are found on HPC
platforms and potentially portions of run-time systems.

• User The user of the HPC platform.
• Resource Manager This can include work load managers, schedulers, allocators and even

portions of run-time systems.
• Administrator The system administrator or HPC platform manager.
• HPCS Manager The individual or individuals responsible for managing policy for the HPC

platform, for example.
• Accounting Individual or software that produces reports of metrics for the HPC platform.

These brief definitions are not meant to be exhaustive. Roles are analogous with the Actors dis-
cussed in section 1.3. In some cases roles become the system that other roles interact with. For
example, we specify an interface between the Application role (HPCS Application in figure 1.1)
and the Operating System (HPCS Operating System in figure 1.1). The Operating System is the
system (in UML terminology) that the Application role is interacting with. Notice in figure 1.1 that
the specification also includes an interface between the Operating System role and the Hardware
(HPCS Hardware in figure 1.1). These and other interfaces are described in chapter 6. The user of
the API is required to specify what role they will assume when interacting with the system upon
initialization of the API.

Roles are also provided as a mechanism for the implementation to express priority or prece-
dence in circumstances where, for example, conflicting operations are requested.

2.4 System Description

The system description is the view of the system exposed to the user upon initialization via the
context that is returned. Figure 2.1 depicts an example of a system description showing a hierar-
chical arrangement of objects. All object types listed in the specification must be defined by any
implementation, but do not have to be used in the system description. The implementation chooses
which objects will be employed in the system description and how they will be arranged. An ob-
ject can only have a single parent but may have multiple children. Currently, a system description
may only describe a single platform and have a single object of type Platform which represents
the top of the hierarchy. Later revisions of the specification may include the ability to combine
multiple platforms in the system description. This might be useful, for example, in representing an
entire datacenter. While figure 2.1 depicts a homogeneous system description, homogeneity is not
a requirement. In practice a system description can be heterogeneous and unbalanced.

To summarize the requirements:

• The Platform object type must be defined by the implementation and must appear at the
top of the system description.

• All object types in this specification must be defined in any implementation. The use of the
object types, with the exception of the Platform object type, is optional.

18

Platform

Cabinet

Node

Socket

Core

Power Plane

Chassis

Board Board

Node Node Node

Core

Power Plane

Socket

Core

Power
Plane

Core

Power
Plane

Socket

Core

Power
Plane

Core

Power
Plane

Socket

Core

Power
Plane

Core

Power
Plane

Core Core

Core Core

Core Core Core Core

Figure 2.1: Hierarchical Depiction of System Objects

19

• Objects can only have one parent but may have many children. Currently the Platform
object has no parent since it appears at the top of the system description. This will likely
change in future versions of the specification.

The following is a list of the object types currently included in the specification along with a
short description of each.

• Platform - Currently, the one and only Platform object is the top level object of the system
description exposed to the user of the API. The Platform object is intended to conceptually
represent the entire Platform. For example, if the Platform object has a power or energy
measurement or control capability exposed through the Platform objects attributes the scope
of these attributes should be platform wide.

• Cabinet - Objects of type Cabinet are intended to represent the cabinets or racks that act as
enclosures (or logical groupings) for the platform equipment. Beyond the utility of conve-
nient groups of lower level objects (equipment) cabinets may have power or energy relevant
capabilities which can be exposed through attributes associated with each Cabinet object.

• Chassis - Objects of type Chassis are intended to be used for finer grained organization of
objects within the higher level Cabinet object. Chassis, like cabinets may have power or
energy relevant capabilities that can be exposed to the user.

• Board - Board objects offer another method of organization for underlying objects (equip-
ment). Boards may also have power and or energy relevant capabilities which can be exposed
through associated attributes. For example, a board could contain the power supply and the
point of instrumentation for collecting power or energy samples for a node or multiple nodes.

• Node - The Node type is probably one of the most universally important object types. Mea-
suring and controlling the power and or energy characteristics of a node or multiple nodes
(grouped into multiple Boards, Chassis or Cabinets) is important for a many reasons and pro-
vides a wide range of flexibility of configuration to the implementor. For example, on HPC
platforms a single application typically executes on many nodes. Understanding the energy
use of an application run can be obtained by collecting the energy use (via the appropriate
Node attribute) for each node participating in that application execution. Node objects will
likely have many attributes exposing many power and energy relevant capabilities.

• Socket - The Socket object is intended to represent the one or more processor sockets, or
other component types that can be thought of as sockets, that make up a Node. For example,
a single Node object may be a dual socket (dual CPU) node. The implementor may choose
to enclose other component types (a NIC for example) within a Socket object, or add other
object types as they see fit to represent the architecture they are describing. They can also
decide to omit the use of this, or any other object type (currently other than Platform) in the
system description.

• Power Plane - The Power Plane object is used to organize lower level objects (any types of
objects) within a power domain or single point of measurement and or control. For example,
a pair of cores may share a power plane within a socket. This configuration is depicted in
figure 2.1. This organization allows a pair of cores to be controlled from a single power
control point in the hierarchy for convenience. This object type allows these power and
energy relevant relationships to be expressed anywhere in the system description.

• Core - Core objects are intended to represent the individual processor cores within multi-

20

core CPUs (or possibly GPUs). Modern architectures have an increasing number of cores
per CPU (or GPU). In the near future it is likely that an abstraction between Socket and core
would become useful as the number of cores increase. Physical and logical groupings of
cores already exist in current architectures.

• Memory - The Memory object type is included to represent the growing range of memory
types that exist on HPC platforms. Individual cores, for example, have Memory in the form
of cache which the implementor may choose to organize differently from the main memory
of the Node or a tertiary level of memory such as NVRAM.

• NIC - The NIC object is intended to represent the Network Interface Controller. As with
many other object types, the organization of a NIC in relation to Boards, Nodes or even
Cores is architecture dependent. The NIC object type is included in hopes that there are
power and energy relevant capabilities included in future NICs.

Additional object types may be defined by the implementor and placed anywhere in the hier-
archy as long as the previously stated rules are not violated. Ultimately, the object types defined
in this specification, and those added by the implementor, will be used to produce a system de-
scription describing the system presented to the user via the context returned upon initialization.
Objects are used as interfaces to underlying functionality. The specification does not assume state
is retained for objects. Additionally, the specification makes no guarantees with regards to race
conditions between processes or threads.

2.5 Attributes

Attributes are an important part of the Power API. A large amount of basic functionality is ex-
posed through the use of attributes. The term attribute is used somewhat conceptually since some
attributes are implicit while others are explicitly defined as part of a required specification data
structure (page 26). Attributes are used for a number of reasons such as to navigate through the
system description, to access information or a measurement (sensor information for example) and
for control (setting a P-state for example). Global attributes are attributes that are present for every
object defined; whether required by the specification or added by the implementor.

The following is the list of global attributes:

• name - Unique identifying name of the object (see PWR_ObjGetName on page 38).
• entry point - The position in the hierarchy after initialization (see PWR_CntxtGetEntryPoint

on page 37).
• type - The type of the object (see PWR_ObjGetType on page 38).
• parent - The parent of an object is the object that is above it in the hierarchy (see PWR_-
ObjGetParent on page 39). The only exception is the currently single platform object
whose parent is a pointer to NULL.

• children - Object or objects directly below an object in the hierarchy (see PWR_ObjGetChild-
ren on page 39).

21

Note, in the list above all the attributes are implicit. Explicit attributes are defined in PWR_-
AttrName (page 26). The majority of the attributes defined in the specification, and likely those
added by an implementator, are, and will be, explicit. The implicit attributes defined above are
primarily used for navigation and are accessed through attribute specific functions which are de-
scribed in Section 4.2.

Explicit attributes are either accessed through the generic attribute interface (Section 4.4) or
attribute specific functions found in either the section describing the specific interface in which
they are used or in Chapter 4, Core (Common) Interface Functions.

The attribute interface is intended to keep the specification from growing every time additional
functionality is either specified or added by an implementor. As long as the new functionality fits
within the defined attribute interfaces no additional API functions are required to be specified.

2.6 Metadata

Each object and object attribute pair can have additional descriptive metadata associated with it.
This information is often useful for getting a better understanding of the meaning of objects and
attributes and how to interpret the values read from attributes. Examples include a human readable
name and description strings, the list of values supported by an attribute, and measurement accu-
racy and precision. The metadata interface (see section 4.5) returns information relevant to either a
specific object or a specific attribute of a specific object. A given attribute name may have different
metadata for different objects, even if the objects are of the same type (e.g., the voltage attribute of
two node objects may have different metadata accuracy values).

2.7 Thread Safety

Implementations of the Power API are not required to provide thread safety to multiple threads of
the same process. If necessary, users of the Power API must use locking or some other mechanism
to ensure that only one thread per process calls into the Power API at a time. This requirement only
applies to threads of the same process that may issue conflicting operations. Different processes
may make simultaneous Power API calls without any coordination. If thread concurrency within a
process is required, the PWR_CntxtInit function can be called multiple times to initialize multiple
Power API contexts. Multiple threads of the same process may then simultaneously call into the
Power API, so long as each thread operates on a different Power API context. For example, a
process with four threads may create four Power API contexts and associate one context with each
thread. The threads may then make Power API calls without any additional coordination, so long as
each thread operates only on its assigned context and the objects exposed by its assigned context.
Threads should not operate on objects exposed by another thread’s context without employing
locking or some other coordination mechanism.

22

Chapter 3

Type Definitions

3.1 Opaque Types

The following type definitions are specified to be opaque pointers from the point of view of Power
API users. Power API implementations will typically map these pointers to internal implementation-
specific state. The reason for using opaque pointers is to hide non-portable implementation details
from users and give implementors of the API maximum flexibility.

typedef void* PWR_Cntxt;
typedef void* PWR_Grp;
typedef void* PWR_Obj;
typedef void* PWR_Status;
typedef void* PWR_Stat;

3.2 Globally Relevant Definitions

The following definitions are specified on a global basis. The PWR_MAJOR_VERSION and PWR_-
MINOR_VERSION definitions are compile time constants that indicate the Power API version sup-
ported by the implementation. The PWR_MAX_STRING_LEN definition is a compile time constant
that defines the maximum length of strings that can be returned from Power API calls, with the
actual value being a vendor specific length.

#define PWR_MAJOR_VERSION 1
#define PWR_MINOR_VERSION 1
#define PWR_MAX_STRING_LEN VENDOR_MAX_STRING_LEN

3.3 Context Relevant Type Definitions

The PWR_CntxtType and PWR_Role types are required to be defined by all implementations of the
Power API. When a new Power API context is created, one value from each of these types is used

23

to determine the kind of context created (see section 4.1). For PWR_CntxtType, the only required
value that an implementation must define is PWR_CNTXT_DEFAULT. This indicates that the new
context will only contain Power API functionality that is explicitly defined in the specification, with
no implementation-specific extentions present. Implementors may extend PWR_CntxtType with
additional values, such as PWR_CNTXT_VENDOR, to provide contexts with additional functionality.

We anticipate that most implementations of the Power API will define additional PWR_Cntxt-
Type values that provide additional functionality, such as vendor, platform, or model specific ex-
tentions. If an implementation extends the specification, the extensions should only be visible to
the user when they use a context that was created with an implementation-specific PWR_CntxtType
value. If the implementation-specific extensions are not available to the user, initialization using
an implementation-specific PWR_CntxtType value should result in failure. The user must always
be able to initialize a context using PWR_CNTXT_DEFAULT to to get a context containing only the
standard specification features.

Differentiation between context types is the mechanism used by the Power API to enable ex-
tended vendor, platform or model specific capabilities while, at the same time, allowing portability
for applications or tools that only leverage standard specification features. For example, a tool
that leverages only the object and attribute types defined in the standard specification can initialize
a Power API context using PWR_CNTXT_DEFAULT and not have to worry about dealing with any
implementation-specific functionality. The context it receives will only provide functionality that
is explicitly defined by the Power API specification.

PWR_Role is used to specify the role that the user is acting in when they initialize a new con-
text. Additional roles may not be added by the implementor. Notice that there is a role defined
for every actor in Chapter 6 - Role/Systems Interfaces. We intend that the user’s role will serve
many purposes, such as determining the view of the system that is provided within the context
when combined with the system the user is acting on. Roles can also be used to help determine
the privilege of the user’s context for purposes such as resolving the precedence of conflicting
operations.

PWR CntxtType

typedef int PWR_CntxtType;
#define PWR_CNTXT_DEFAULT 0
#define PWR_CNTXT_VENDOR 1

24

PWR Role

typedef enum {
PWR_ROLE_APP = 0, /* Application */
PWR_ROLE_MC, /* Monitor and Control */
PWR_ROLE_OS, /* Operating System */
PWR_ROLE_USER, /* User */
PWR_ROLE_RM, /* Resource Manager */
PWR_ROLE_ADMIN, /* Administrator */
PWR_ROLE_MGR, /* HPCS Manager */
PWR_ROLE_ACC, /* Accounting */
PWR_NUM_ROLES,
/* */
PWR_ROLE_INVALID = -1,
PWR_ROLE_NOT_SPECIFIED = -2

} PWR_Role;

3.4 Object Relevant Type Definitions

The PWR_ObjType type is required to be defined by all implementations of the Power API spec-
ification. Objects with types defined by PWR_ObjType are used by the implementor to create the
system description (see section 2.4) that is exposed to the user upon initialization. An implemen-
tation may extend this type by adding new object enumeration type, which must be added prior
to PWR_NUM_OBJ_TYPES. The added implementation-specific object types will only be used by
implementation-specific contexts (see section 3.3). Contexts that were initialized using the default
context, PWR_CNTXT_DEFAULT, will only expose objects types defined in the list below.

PWR ObjType

typedef enum {
PWR_OBJ_PLATFORM = 0,
PWR_OBJ_CABINET,
PWR_OBJ_CHASSIS,
PWR_OBJ_BOARD,
PWR_OBJ_NODE,
PWR_OBJ_SOCKET,
PWR_OBJ_CORE,
PWR_OBJ_POWER_PLANE,
PWR_OBJ_MEM,
PWR_OBJ_NIC,
PWR_NUM_OBJ_TYPES,
/* */
PWR_OBJ_INVALID = -1,
PWR_OBJ_NOT_SPECIFIED = -2

} PWR_ObjType;

25

3.5 Attribute Relevant Type Definitions

The PWR_AttrName and PWR_AttrDataType types are required to be implemented. Both may
be extended by the implementor and exposed using an implementation specified context type (see
section 3.3). If new PWR_AttrName entries are added it is required that the attribute name is
specified and commented as shown in the PWR_AttrName structure. Likewise, new types must
be added to the PWR_AttrDataType structure. It’s important to note that the attribute interface
currently supports only numeric types. Attributes should only be added to this definition if they
can be meaningfully supported by the attribute interface (section 4.4). Additional attributes must be
added prior to PWR_NUM_ATTR_NAMES. The Attributes in PWR_AttrName expose what we consider
foundational measurement and control interfaces. Additional capabilities are and can be added
using additional operations and often interface specific functions.

The PWR_AttrAccessError type is used to hold the error returns that are popped from the
PWR_Status handle (see section 3.1) using the PWR_StatusPopError function (see page 49).

PWR AttrName

typedef enum {
PWR_ATTR_PSTATE = 0, /* uint64_t */
PWR_ATTR_CSTATE, /* uint64_t */
PWR_ATTR_CSTATE_LIMIT, /* uint64_t */
PWR_ATTR_SSTATE, /* uint64_t */
PWR_ATTR_CURRENT, /* double, amps */
PWR_ATTR_VOLTAGE, /* double, volts */
PWR_ATTR_POWER, /* double, watts */
PWR_ATTR_POWER_LIMIT_MIN, /* double, watts */
PWR_ATTR_POWER_LIMIT_MAX, /* double, watts */
PWR_ATTR_FREQ, /* double, Hz */
PWR_ATTR_FREQ_LIMIT_MIN, /* double, Hz */
PWR_ATTR_FREQ_LIMIT_MAX, /* double, Hz */
PWR_ATTR_ENERGY, /* double, joules */
PWR_ATTR_TEMP, /* double, degrees Celsius */
PWR_ATTR_OS_ID, /* uint64_t */
PWR_ATTR_THROTTLED_TIME, /* uint64_t */
PWR_ATTR_THROTTLED_COUNT, /* uint64_t */
PWR_NUM_ATTR_NAMES,
/* */
PWR_ATTR_INVALID = -1,
PWR_ATTR_NOT_SPECIFIED = -2

} PWR_AttrName;

26

PWR AttrDataType

typedef enum {
PWR_ATTR_DATA_DOUBLE = 0,
PWR_ATTR_DATA_UINT64,
PWR_NUM_ATTR_DATA_TYPES,
/* */
PWR_ATTR_DATA_INVALID = -1,
PWR_ATTR_DATA_NOT_SPECIFIED = -2

} PWR_AttrDataType;

PWR AttrAccessError

typedef struct {
PWR_Obj obj;
PWR_AttrName name;
int error;

} PWR_AttrAccessError;

3.6 Metadata Relevant Type Definitions

The PWR_MetaName type is required to be implemented. The type may be extended by the imple-
mentor and the additional capabilities may be exposed using an implementation specified context
type (see section 3.3). If new PWR_MetaName items are added, it is required that the metadata name
be specified and commented as shown in the PWR_MetaName definition. Additional metadata items
must be added prior to PWR_NUM_META_NAMES.

27

PWR MetaName

typedef enum {
PWR_MD_NUM = 0, /* uint64_t */
PWR_MD_MIN, /* either uint64_t or double, depending on attribute type */
PWR_MD_MAX, /* either uint64_t or double, depending on attribute type */
PWR_MD_PRECISION, /* uint64_t */
PWR_MD_ACCURACY, /* double */
PWR_MD_UPDATE_RATE, /* double */
PWR_MD_SAMPLE_RATE, /* double */
PWR_MD_TIME_WINDOW, /* PWR_Time */
PWR_MD_TS_LATENCY, /* PWR_Time */
PWR_MD_TS_ACCURACY, /* PWR_Time */
PWR_MD_MAX_LEN, /* uint64_t, max strlen of any returned metadata string. */
PWR_MD_NAME_LEN, /* uint64_t, max strlen of PWR_MD_NAME */
PWR_MD_NAME, /* char *, C-style NULL-terminated ASCII string */
PWR_MD_DESC_LEN, /* uint64_t, max strlen of PWR_MD_DESC */
PWR_MD_DESC, /* char *, C-style NULL-terminated ASCII string */
PWR_MD_VALUE_LEN, /* uint64_t, max strlen returned by PWR_MetaValueAtIndex */
PWR_MD_VENDOR_INFO_LEN, /* uint64_t, max strlen of PWR_MD_VENDOR_INFO */
PWR_MD_VENDOR_INFO, /* char *, C-style NULL-terminated ASCII string */
PWR_MD_MEASURE_METHOD, /* uint64_t, 0/1 depending on real/model mesurement */
PWR_NUM_META_NAMES,
/* */
PWR_MD_INVALID = -1,
PWR_MD_NOT_SPECIFIED = -2

} PWR_MetaName;

3.7 Error Return Definitions

The following required definitions are the available error returns for the functions described in this
specification. It is anticipated that this list will grow. The implementor is also free to add error
returns to express conditions not currently covered in the specification and expose them using an
implementation specified context type (see section 3.3). The range -127 through 128 are reserved
for use by the Power API specification. Positive numbers greater than zero are to be used for
warnings.

28

#define PWR_RET_WARN_NOT_OPTIMIZED 1
#define PWR_RET_SUCCESS 0
#define PWR_RET_FAILURE -1
#define PWR_RET_NOT_IMPLEMENTED -2
#define PWR_RET_EMPTY -3
#define PWR_RET_INVALID -4
#define PWR_RET_LENGTH -5
#define PWR_RET_NO_ATTRIB -6
#define PWR_RET_NO_META -7
#define PWR_RET_READ_ONLY -8
#define PWR_RET_BAD_VALUE -9
#define PWR_RET_BAD_INDEX -10
#define PWR_RET_OP_NOT_ATTEMPTED -11
#define PWR_RET_NO_PERM -12
#define PWR_RET_OUT_OF_RANGE -13

3.8 Time Related Definitions

PWR_Time is defined as a 64-bit value used to hold timestamps in nanoseconds for a wide range of
functionality. For those timestamps that are to be used in relation to an epoch, midnight January
1st, 1970 will be considered the beginning of the epoch. This will provide for hundreds of years to
be expressed from the epoch point, which is sufficient for the purposes of the Power API. PWR_-
Time is also used for other structures designed to record time values (PWR_TimePeriod, page 30
for example). PWR_TIME_UNINIT is used as an indicator that the time value has not been initialized.
This is intended to allow the implementation to make decisions on how a function is being used
based on whether a time value has been specified or not (for example, the Statistics functions in
section 4.6). PWR_TIME_UNKNOWN is an output, which indicates that the time of an event was not
recorded. For example, a maximum value for an attribute could be known for a given time period,
but the instant at which the maximum occurred is unknown. The PWR_TimePeriod type allows
for three timestamps, start, stop and instant. Instant is available to indicate when a statistically
significant event occurred within the window delineated by start and stop. For example, if the
user requests the PWR_ATTR_STAT_MAX statistic for PWR_ATTR_POWER, the start and stop times will
indicate the window of time over which the maximum value was calculated. The instant would
indicate the instant in time the maximum value occurred. Defining PWR_Time, PWR_TIME_UNINIT,
PWR_TIME_UNKNOWN, and PWR_TimePeriod as specified is required.

typedef uint64_t PWR_Time;
#define PWR_TIME_UNINIT 0
#define PWR_TIME_UNKNOWN 0

29

PWR TimePeriod

typedef struct {
PWR_Time start;
PWR_Time stop;
PWR_Time instant;

} PWR_TimePeriod;

3.9 Statistics Relevant Type Definitions

The PWR_AttrStat type includes the list of currently defined statistics potentially available to
the user of an implementation. Potentially, because this feature requires either direct device or
software support. Statistics are generated on a per-attribute basis (see PWR_AttrName on page
26). The statistics type definitions are required to be implemented and are used with the statistics
functions (see section 4.6).

PWR AttrStat

typedef enum {
PWR_ATTR_STAT_MIN = 0,
PWR_ATTR_STAT_MAX,
PWR_ATTR_STAT_AVG,
PWR_ATTR_STAT_STDEV,
PWR_ATTR_STAT_CV,
PWR_NUM_ATTR_STATS,
/* */
PWR_ATTR_STAT_INVALID = -1,
PWR_ATTR_STAT_NOT_SPECIFIED = -2

} PWR_AttrStat;

PWR ID

typedef enum {
PWR_USER_ID = 0,
PWR_JOB_ID,
PWR_RUN_ID,
PWR_NUM_IDS,
/* */
PWR_ID_INVALID = -1,
PWR_ID_SPECIFIED = -2

} PWR_ID;

30

3.10 OS Hardware Interface Type Definitions

The following definitions are used in the Operating system to Hardware interface described in sec-
tion 6.1. Each definition will be described below along with its specification. All of the definitions
in this section are required, even if the corresponding OS/HW functions are not implemented.

PWR OperState

The PWR_OperState type is used to describe the state being requested by OS to Hardware in-
terface functions that require power/performance state information such as P-State and C-State
information. Both c_state_num and p_state_num must be provided.

typedef struct {
uint64_t c_state_num;
uint64_t p_state_num;

} PWR_OperState;

3.11 Application OS Interface Type Definitions

The following definitions are primarily used in the Application to Operating system interface de-
scribed in section 6.3. Each definition will be described below along with its specification. All
of the definitions in this section are required, even if the corresponding App/OS functions are not
implemented.

PWR RegionHint

The PWR_RegionHint type is an abstraction intended to allow the application to communicate
power and performance significant information to the operating system. It is used in conjunction
with PWR_RegionIntensity to describe the type and extent of the behavior described for a given
execution region. This information can then be used to tune components, with the intent being a
more power/performance efficient use of the components results. For example, if an application is
going into a serial region, the performance of the application may benefit from the core running the
serial portion of the code at a higher frequency, thereby completing that serial portion faster. Since
the application is in a serial portion, the implementation may determine that the remaining cores
may be put into a more power efficient state (a sleep state for example), thus possibly resulting in
both a performance increase and a decrease in the amount of power/energy the application uses.
Regions may be specified as PWR_REGION_DEFAULT to indicate that the application is no longer
providing a hint as to the region characteristics of currently executing code.

31

typedef enum {
PWR_REGION_DEFAULT = 0,
PWR_REGION_SERIAL,
PWR_REGION_PARALLEL,
PWR_REGION_COMPUTE,
PWR_REGION_COMMUNICATE,
PWR_REGION_IO,
PWR_REGION_MEM_BOUND,
PWR_NUM_REGION_HINTS,
/* */
PWR_REGION_INVALID = -1,
PWR_REGION_NOT_SPECIFIED = -2

} PWR_RegionHint;

PWR RegionIntensity

The PWR_RegionIntensity type is an abstraction of a given level of intensity for a PWR Region-
Hint. It provides five levels of intensity as well as PWR_Region_INT_NONE, which can be used in
the case where the intensity is not known, is not applicable, or in cases where the operating system
or runtime may be better equipped to determine the intensity of a given code region.

typedef enum {
PWR_REGION_INT_HIGHEST = 0,
PWR_REGION_INT_HIGH,
PWR_REGION_INT_MEDIUM,
PWR_REGION_INT_LOW,
PWR_REGION_INT_LOWEST,
PWR_REGION_INT_NONE,
PWR_NUM_REGION_INTENSITIES,
/* */
PWR_REGION_INT_INVALID = -1,
PWR_REGION_INT_NOT_SPECIFIED = -2

} PWR_RegionIntensity;

PWR SleepState

The PWR_SleepState type is a high level abstraction of the different sleep state levels that may
be provided on a given system. The sleep levels are translated into the appropriate hardware level
constructs by lower layers of the PowerAPI.

32

typedef enum {
PWR_SLEEP_NO = 0,
PWR_SLEEP_SHALLOW,
PWR_SLEEP_MEDIUM,
PWR_SLEEP_DEEP,
PWR_SLEEP_DEEPEST,
PWR_NUM_SLEEP_STATES,
/* */
PWR_SLEEP_INVALID = -1,
PWR_SLEEP_NOT_SPECIFIED = -2

} PWR_SleepState;

PWR PerfState

The PWR_PerfState type is an abstraction meant to describe the different possible performance
states in which hardware may be placed.

typedef enum {
PWR_PERF_FASTEST = 0,
PWR_PERF_FAST,
PWR_PERF_MEDIUM,
PWR_PERF_SLOW,
PWR_PERF_SLOWEST,
PWR_NUM_PERF_STATES,
/* */
PWR_PERF_INVALID = -1,
PWR_PERF_NOT_SPECIFIED = -2

} PWR_PerfState;

33

34

Chapter 4

Core (Common) Interface Functions

Core, or so called Common, interface functions are functions that can be used, at least in par,
by most of the interfaces described in the Power API specification. Core functions include the
following areas:

• Initialization, required to use any of the functionality described in this specification,
• Navigation functions allow the user to traverse the system description and discover infor-

mation about the underlying platform,
• Group functions, primarily a convenience abstraction,
• Attribute functions expose measurement and control functionality,
• Metadata functions allow the user to access additional information about objects and at-

tributes (often device or instrumentation specific information),
• Statistics functions are used to generate statistical information based on fundamental at-

tribute information (measurements),

and other functionality that is common across a number of interfaces.

4.1 Initialization

Initialization using PWR_CntxtInit is required to use any of the functionality documented in this
specification. The user supplies the type of the context requested and their role. Currently, the
specification’s only required context type is PWR_CNTXT_DEFAULT. The context type is intended
to be one way in which the implementor can distinguish their implementation from the standard
specification and other implementations (see section 3.3). The user must also supply their role
(see page 25 for the PWR_Role definition). One purpose of specifying the role is to convey what
type of user they intend to be, and therefore, how they would like to interact with or how the
underlying implementation manages the privileges granted to the user/role combination. A system
administrator (PWR_ROLE_ADMIN) will desire and require different capabilities, privileges and level
of abstraction than the application user (PWR_ROLE_APP), for example.

The user also has the opportunity to specify a name that will be associated with the context.
This feature is anticipated to be useful in supporting advanced functionality. Initialization returns
a context to the user. The context contains the user’s view of the system, dependent on what type

35

of context was requested, the user’s role and implementation specifics. The system description
that the user is exposed to must conform to the rules outlined in the specification (see sections 2.2
and 2.4). The context should be destroyed (cleaned up) by using the PWR_CntxtDestroy function
when no longer needed.

Function Prototype PWR CntxtInit()

The PWR_CntxtInit function is required to be called before using any other Power API function.
The context returned is passed to other Power API functions either explicitly as an argument or
implicitly through an argument associated with the context.

PWR_Cntxt PWR_CntxtInit(PWR_CntxtType type,
PWR_Role role,
const char* name);

Argument(s) Input Description
and/or
Output

PWR_CntxtType type Input The requested context type (see page 24).
PWR_Role role Input The role of the user (see page 25).
const char* name Input User specified string name to be associated

with the context.

Return Code(s) Description
PWR_Cntxt A valid context is returned upon SUCCESS
NULL A null pointer is returned upon FAILURE

Function Prototype for PWR CntxtDestroy()

The PWR_CntxtDestroy function is used to destroy (clean up) the context obtained with PWR_-
CntxtInit.

int PWR_CntxtDestroy(PWR_Cntxt context);

Argument(s) Input Description
and/or
Output

PWR_Cntxt context Input The context obtained using PWR_CntxtInit
the user wishes to destroy.

36

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE

4.2 Hierarchy Navigation Functions

Hierarchy navigation (also called discovery) is accomplished using attributes (EntryPoint, Type,
Parent and Children) that are implicit to every object in the system description whether defined in
the specification or added by the implementor. Navigation is accomplished using these attributes,
through the associated function calls, within the context made available to the user upon initializa-
tion. After initialization the first call will generally be PWR_CntxtGetEntryPoint to determine
the user’s current position in the system hierarchy provided within the user’s context. Depending
on the user, the interface and the role, the context could contain a view of the entire system descrip-
tion or a subset of the system description. Navigating through the hierarchy is accomplished with
PWR_ObjGetParent to navigate up and PWR_ObjGetChildren to navigate down. To understand
what kind of object was returned with either of these calls the user can utilize PWR_ObjGetType
call. The name of the object can be discovered using the PWR_ObjGetName function and if the user
has a name, the associated object can be discovered using the PWR_CntxtGetObjByName function.

The Power API does not provide an explicit “Free Object” interface. Specifically, objects re-
turned by Power API interfaces do not need to be later freed or released explicitly. This design
choice was made in order to keep usage of the Power API as simple as possible, with the poten-
tial cost of an increased burden on the Power API implementor to limit implementation-internal
memory usage.

Function Prototype for PWR CntxtGetEntryPoint()

The PWR_CntxtGetEntryPoint call is typically used immediately following initialization. Given
the context obtained with PWR_CntxtInit, PWR_CntxtGetEntryPoint returns the users current
location, the object the user is currently pointing to in the system description contained in the
context.

PWR_Obj PWR_CntxtGetEntryPoint(PWR_Cntxt context);

Argument(s) Input Description
and/or
Output

PWR_Cntxt context Input The user’s context.

37

Return Code(s) Description
PWR_Obj Returns the object representing the user’s current position

in the system hierarchy upon SUCCESS.
NULL A null pointer is returned upon FAILURE

Function Prototype for PWR ObjGetType()

The PWR_ObjGetType function returns the type of the object specified. See page 25 for valid object
types.

PWR_ObjType PWR_ObjGetType(PWR_Obj object);

Argument(s) Input Description
and/or
Output

PWR_Obj object Input The object that the user wishes to determine
the type of.

Return Code(s) Description
PWR_ObjType Type of the specified object upon SUCCESS
PWR_OBJ_INVALID Upon FAILURE

Function Prototype for PWR ObjGetName()

The PWR_ObjGetName function returns the name of the object specified. See page 40 to get the
object based on the unique name using PWR_CntxtGetObjByName.

const char* PWR_ObjGetName(PWR_Obj object);

Argument(s) Input Description
and/or
Output

PWR_Obj object Input The object that the user wishes to determine
the name of.

38

Return Code(s) Description
const char* Name of the specified object upon SUCCESS. The returned

pointer is marked const and should not be modified by the
caller. This pointer is only valid while the object’s parent
context is valid. When the parent context is destroyed the
pointer becomes invalid.

NULL Upon FAILURE

Function Prototype for PWR ObjGetParent()

The PWR_ObjGetParent function returns the object immediately above the specified object in the
system description available to the user through the current context.

PWR_Obj PWR_ObjGetParent(PWR_Obj object);

Argument(s) Input Description
and/or
Output

PWR_Obj object Input The object that the user wishes to determine
the parent of.

Return Code(s) Description
PWR_Obj The parent object of the specified object upon SUCCESS
NULL Upon FAILURE

Function Prototype for PWR ObjGetChildren()

The PWR_ObjGetChildren function returns the child or children of the specified object. A group
(PWR_Grp) is returned regardless of whether the object has one or many children. Children are
immediate siblings of the specified parent object. The user is responsible for destroying the group
when no longer needed (see PWR_GrpDestroy 41).

PWR_Grp PWR_ObjGetChildren(PWR_Obj object);

Argument(s) Input Description
and/or
Output

PWR_Obj object Input The object that the user wishes to determine
the children of.

39

Return Code(s) Description
PWR_Grp Group of objects (possibly a group of one object) containing

the children of the specified object upon SUCCESS
NULL Upon FAILURE

Function Prototype for PWR CntxtGetObjByName()

The PWR_CntxtGetObjByName function returns the object given the context and unique object
name. See page 38 to get the name of a specified object using PWR_ObjGetName.

PWR_Obj PWR_CntxtGetObjByName(PWR_Cntxt context,
const char* name);

Argument(s) Input Description
and/or
Output

PWR_Cntxt context Input The context containing the object that the
user wishes to retrieve given its unique name.
Note, the object may be present in the system
but not available to the user through the cur-
rent context.

const char * name Input The unique name of the object that the user
wishes to retrieve.

Return Code(s) Description
PWR_Obj Upon SUCCESS, the object associated with the unique

specified name
NULL Upon FAILURE

4.3 Group Functions

Group functions are provided as a convenience in situations, for example, where an operation, or
operations are required to be executed on multiple objects. Rather than executing the same oper-
ation multiple times, once for each object, some operations provide a group variant to streamline
this type of functionality. Groups can be dynamically created (PWR_GrpCreate) when needed and
can exist for short periods of time and destroyed with PWR_GrpDestroy, or exist for the duration
of the users context.

40

Function Prototype for PWR GrpCreate()

The PWR_GrpCreate function is used to create a new group which will be associated with and
unique to the users context.

PWR_Grp PWR_GrpCreate(PWR_Cntxt context);

Argument(s) Input Description
and/or
Output

PWR_Cntxt context Input The user’s context that the group, when cre-
ated, will be associated with.

Return Code(s) Description
PWR_Grp Upon SUCCESS (empty group)
NULL Upon FAILURE

Function Prototype for PWR GrpDestroy()

The PWR_GrpDestroy function is used to destroy (clean up) a group created by a user.

int PWR_GrpDestroy(PWR_Grp group);

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The group that the user is acting on.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR GrpDuplicate()

The PWR_GrpDuplicate function is used to duplicate an existing group.

PWR_Grp PWR_GrpDuplicate(PWR_Grp group);

41

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The group that the user is acting on.

Return Code(s) Description
PWR_Grp Upon SUCCESS (duplicated group)
NULL Upon FAILURE

Function Prototype for PWR GrpUnion()

The PWR_GrpUnion function is used to create a group that is the union ([) of two specified groups.

PWR_Grp PWR_GrpUnion(PWR_Grp group, PWR_Grp group);

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The first of the two groups used in the union
([) operation.

PWR_Grp group Input The second of the two groups used in the
union ([) operation.

Return Code(s) Description
PWR_Grp Upon SUCCESS (union of groups input)
NULL Upon FAILURE

Function Prototype for PWR GrpIntersection()

The PWR_GrpIntersection function is used to create a group that is the Intersection (\) of two
specified groups.

PWR_Grp PWR_GrpIntersection(PWR_Grp group, PWR_Grp group);

42

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The first of the two groups used in the Inter-
section (\) operation.

PWR_Grp group Input The second of the two groups used in the in-
tersection (\) operation.

Return Code(s) Description
PWR_Grp Upon SUCCESS (Intersection of groups input)
NULL Upon FAILURE

Function Prototype for PWR GrpDifference()

The PWR_GrpDifference function is used to create a group that is the Difference (\) of two
specified groups.

PWR_Grp PWR_GrpDifference(PWR_Grp group, PWR_Grp group);

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The first of the two groups used in the Dif-
ference (\) operation.

PWR_Grp group Input The second of the two groups used in the
Difference (\) operation.

Return Code(s) Description
PWR_Grp Upon SUCCESS (Difference of groups input)
NULL Upon FAILURE

Function Prototype for PWR GrpGetNumObjs()

The PWR_GrpGetNumObjs function is used to get the number of objects contained in the specified
group.

int PWR_GrpGetNumObjs(PWR_Grp group);

43

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The group that the user is acting on.

Return Code(s) Description
int Upon SUCCESS, the number of objects contained in the

specified group.
PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR GrpGetObjByIndx()

The PWR_GrpGetObjByIndx is used to get the object from the specified group at the specified
index.

PWR_Obj PWR_GrpGetObjByIndx(PWR_Grp group,
int index);

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The group that the user is acting on.
int index Input The index within the specified group of the

desired object.

Return Code(s) Description
PWR_Obj Upon SUCCESS, the object at the index within the specified

group.
NULL Upon FAILURE

Function Prototype for PWR GrpAddObj()

The PWR_GrpAddObj function is used to add a specified object to a specified group.

int PWR_GrpAddObj(PWR_Grp group,
PWR_Obj object);

44

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The group that the user is acting on.
PWR_Obj object Input The object to be added to the specified group.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon SUCCESS

Function Prototype for PWR GrpRemoveObj()

The PWR_GrpRemoveObj function is used to remove a specified object from a specified group.

int PWR_GrpRemoveObj(PWR_Grp group,
PWR_Obj object);

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The group that the user is acting on.
PWR_Obj object Input The object to be removed from the specified

group.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR CntxtGetGrpByName()

The PWR_CntxtGetGrpByName function returns the object given the context and unique group
name. This function is included to allow the user to make use of groups that are provided with the
initial context by the implementation.

PWR_Grp PWR_CntxtGetGrpByName(PWR_Cntxt context,
const char* name);

45

Argument(s) Input Description
and/or
Output

PWR_Cntxt context Input The context containing the group that the
user wishes to retrieve given its unique name.

const char * name Input The unique name of the group that the user
wishes to retrieve.

Return Code(s) Description
PWR_Grp Upon SUCCESS, the group associated with the unique

specified name.
NULL Upon FAILURE

4.4 Attribute Functions

The Attribute functions make up the foundation of the Power API specification, providing measure-
ment (get) and control (set) interfaces for a wide range of power and energy related functionality.
Get and set interfaces are provided for single attribute/single object, multiple attribute/single ob-
ject, single attribute/multiple objects (group) and multiple attributes/multiple objects (group). In
each case the user specifies the attribute or attributes to get or set. The valid attribute names are
defined in the PWR_AttrName structure (see page 26). A complete list of all the valid attributes
and their meanings can be found in table 4.1, section 4.8. The timestamp is a critical part of the
get (measurement) interface for power and energy related information. It is very important that
the timestamp returned (PWR_Time) be an accurate representation of when the value returned was
measured to the best possible temporal accuracy, not when the function was called. It is required
by the specification that the value returned is the value that was measured as close as possible to
when the get function was called. The quality of the measurement and timestamp are device and
implementation dependent. Information about each attribute can be obtained through the metadata
interface, described in section 4.5.

Function Prototype for PWR ObjAttrGetValue()

The PWR_ObjAttrGetValue function is provided to get the value of a single specified attribute
(PWR_AttrName attr) from a single specified object (PWR_Obj object). The timestamp re-
turned (PWR_Time *ts) should accurately represent when the value was measured.

int PWR_ObjAttrGetValue(PWR_Obj object,
PWR_AttrName attr,
void* value,
PWR_Time* ts);

46

Argument(s) Input Description
and/or
Output

PWR_Obj object Input The target object.
PWR_AttrName attr Input The target attribute. See section 3.5 for a list

of available attributes.
void* value Output Pointer to caller-allocated storage, of 8

bytes, to hold the value read from the at-
tribute.

PWR_Time* ts Output Pointer to caller-allocated storage to hold the
timestamp of when the value was read from
the attribute. Pass in NULL if the timestamp
is not needed.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED The requested attribute is not supported for the target object.

Function Prototype for PWR ObjAttrSetValue()

The PWR_ObjAttrSetValue function is provided to set the value of a single specified attribute
(PWR_AttrName attr) of a single specified object (PWR_Obj object).

int PWR_ObjAttrSetValue(PWR_Obj object,
PWR_AttrName attr,
const void* value);

Argument(s) Input Description
and/or
Output

PWR_Obj object Input The target object.
PWR_AttrName attr Input The target attribute. See section 3.5 for a list

of available attributes.
const void* value Input Pointer to the 8 byte value to write to the at-

tribute.

47

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED The requested attribute is not supported for the target object.
PWR_RET_BAD_VALUE The value was not appropriate for the target attribute.
PWR_RET_OUT_OF_RANGE The value was out of range for the target attribute.

Function Prototype for PWR StatusCreate()

The PWR_StatusCreate function is provided to create the PWR_Status structure that will be
used in functions that perform multiple operations and potentially return individual statuses for
each operation. It is up to the implementation to create the appropriate amount of storage for
the PWR_Status structure based on the implementation and the number of statuses that will be
held. For example see PWR_ObjAttrGetValues on page 50. Note, PWR_Status is an opaque
handle, its backing definition is determined by the implementor (see 3.1). It is intended that the
implementation only allocate space for failed operations. Errors are read from the PWR_Status by
popping them off the structure which requires the structure to only be as large as the number of
error returns require.

PWR_Status PWR_StatusCreate();

Return Code(s) Description
PWR_Status Upon SUCCESS
NULL Upon FAILURE

Function Prototype for PWR StatusDestroy()

The PWR_StatusDestroy function is provided to destroy the PWR_Status structure created using
PWR_StatusCreate (see page 48. Note, PWR_Status is an opaque handle, its backing definition
is determined by the implementor (see 3.1).

int PWR_StatusDestroy(PWR_Status status);

Argument(s) Input Description
and/or
Output

PWR_Status status Input The PWR_Status structure the user wishes to
destroy.

48

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR StatusPopError()

The PWR_StatusPopError function is provided to iterate through the PWR_Status structure cre-
ated using PWR_StatusCreate (see page 48) and populated using any of the function calls that
leverage this structure. Using this method allows the PWR_Status structure to only grow as large as
necessary storing only error returns. Note, PWR_Status is an opaque handle, its backing definition
is determined by the implementor (see 3.1).

int PWR_StatusPopError(PWR_Status status,
PWR_AttrAccessError* error);

Argument(s) Input Description
and/or
Output

PWR_Status status Input The PWR_Status structure the user wishes to
examine (iterate over).

PWR_AttrAccessError*
error

Output Pointer to a PWR_AttrAccessError struc-
ture (see page 27) to hold the status that is
popped from the PWR_Status structure.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_EMPTY Returned when all errors have been popped
PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR StatusClear()

The PWR_StatusClear function is provided to clear a previously used PWR_Status structure cre-
ated using PWR_StatusCreate, (see page 48) basically allowing reuse of the same structure if
multiple calls are executed and examined in sequence. Note, PWR_Status is an opaque handle, its
backing definition is determined by the implementor (see 3.1).

int PWR_StatusClear(PWR_Status status)

49

Argument(s) Input Description
and/or
Output

PWR_Status status Input The PWR_Status structure the user wishes to
clear (reuse).

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR ObjAttrGetValues()

The PWR_ObjAttrGetValues function is provided to get the value of multiple specified attributes
listed in the PWR_AttrName attrs[] array from a single specified object – get multiple attribute
values from a single object. The timestamps returned in the PWR_Time ts[] array should accu-
rately represent, and correspond sequentially, with the time each value returned was measured. If
the function fails for one or more attributes, the PWR_Status status structure returned can be
examined for additional information regarding the failure using PWR_StatusPopError (see page
49).

int PWR_ObjAttrGetValues(PWR_Obj object,
int count,
const PWR_AttrName attrs[],
void* values,
PWR_Time ts[],
PWR_Status status);

50

Argument(s) Input Description
and/or
Output

PWR_Obj object Input The target object.
int count Input The number of elements in the attrs[],

*values, and ts[] arrays.
const PWR_AttrName
attrs[]

Input The array of target attributes to read. See
section 3.5 for a list of available attributes.

void* values Output The array of values read, one value for each
target attribute. This should point to caller-
allocated storage of at least (count * 8)
bytes. Upon success, the value read for at-
tribute attrs[i] will be located at address
(values+(i*8)).

PWR_Time ts[] Output The array of timestamps, one times-
tamp for each value read. This should
point to caller-allocated storage of at least
(count*sizeof(PWR_Time)). Upon suc-
cess, the timestamp of the value read for
attrs[i] will be located at ts[i]. Pass in
NULL if timestamps are not needed.

PWR_Status status Output Upon PWR_RET_FAILURE, status contains
information about each failure that occurred.
Pass in NULL if failure information is not
needed.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations succeeded.
PWR_RET_FAILURE Upon FAILURE, one or more operations failed. Exam-

ine PWR_Status status to determine the operations that
failed. All other operations succeeded.

Function Prototype for PWR ObjAttrSetValues()

The PWR_ObjAttrSetValues function is provided to set the value of multiple specified attributes
in the (PWR_AttrName attrs[]) array of a specified object – set multiple attribute values
of a single object. If the function fails for one or more attributes, the PWR_Status status
structure returned can be examined for additional information regarding the failure using PWR_-
StatusPopError (see page 49).

51

int PWR_ObjAttrSetValues(PWR_Obj object,
int count,
const PWR_AttrName attrs[],
const void* values,
PWR_Status status);

Argument(s) Input Description
and/or
Output

PWR_Obj object Input The target object.
int count Input The number of elements in the attrs[] and

*values arrays.
const PWR_AttrName
attrs[]

Input The array of target attributes to write. See
section 3.5 for a list of available attributes.

const void* values Input The array of values to write, one value for
each target attribute. The value to write
to attribute attrs[i] is located at address
(values+(i*8)).

PWR_Status status Output Upon PWR_RET_FAILURE, status contains
information about each failure that occurred.
Pass in NULL if failure information is not
needed.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations succeeded.
PWR_RET_FAILURE Upon FAILURE, one or more operations failed. Exam-

ine PWR_Status status to determine the operations that
failed. All other operations succeeded.

Function Prototype for PWR ObjAttrIsValid()

The PWR_ObjAttrIsValid function is used to determine if a specified attribute (PWR_AttrName
attr) is valid for the specified object.

int PWR_ObjAttrIsValid(PWR_Obj object,
PWR_AttrName attr);

52

Argument(s) Input Description
and/or
Output

PWR_Obj object Input The object that the user is acting on.
PWR_AttrName attr Input The attribute the user wishes to confirm is

valid for the specified object. See the PWR_-
AttrName type definition in section 3.5.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR GrpAttrGetValue()

The PWR_GrpAttrGetValue function is provided to get the value of a single specified attribute
(PWR_AttrName attr) from all the objects in a specified group (PWR_Grp group) – get a single
attribute value from multiple objects. The timestamps returned in the PWR_Time ts[] array
should accurately represent, and correspond sequentially, with the time each value returned was
measured. If the function fails for one or more attributes, the PWR_Status status structure re-
turned can be examined for additional information regarding the failure using PWR_StatusPopError
(see page 49). PWR_GrpAttrGetValue will continue to attempt to gather values for the entire
group, even if an error occurs for a subset of the members of that group.

int PWR_GrpAttrGetValue(PWR_Grp group,
PWR_AttrName attr,
void* values,
PWR_Time ts[],
PWR_Status status);

53

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The target group.
PWR_AttrName attr Input The target attribute to retrieve (get) from

each object in the target group. See section
3.5 for a list of available attributes.

void* values Output The array of attribute values retrieved, one
value for each object in the target group.
This should point to caller-allocated stor-
age of at least (PWR_GrpGetNumObjs() *
8) bytes. Upon success, the value retrieved
for the object at index i within the group will
be located at address (values+(i*8)).

PWR_Time ts[] Output The array of timestamps, one timestamp for
each value retrieved. This should point to
caller-allocated storage of at least (PWR_-
GrpGetNumObjs()*sizeof(PWR_Time)).
Upon success, the timestamp of the value
retrieved for the object at index i within the
group will be located at ts[i]. Pass in NULL if
timestamps are not needed.

PWR_Status status Output Upon PWR_RET_FAILURE, status contains
information about each failure that occurred.
Pass in NULL if failure information is not
needed.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations succeeded.
PWR_RET_FAILURE Upon FAILURE, one or more operations failed. Exam-

ine PWR_Status status to determine the operations that
failed. All other operations succeeded.

Function Prototype for PWR GrpAttrSetValue()

The PWR_GrpAttrSetValue function is provided to set the value of a single specified attribute
(PWR_AttrName attr) of each object in a specified group – set a single attribute value on mul-
tiple objects. If the function fails for one or more attributes, the PWR_Status status structure re-
turned can be examined for additional information regarding the failure using PWR_StatusPopError
(see page 49). PWR_GrpAttrSetValue will continue to attempt to set values for the entire group,
even if an error occurs for a subset of the members of that group.

54

int PWR_GrpAttrSetValue(PWR_Grp group,
PWR_AttrName attr,
const void* value,
PWR_Status status);

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The target group.
PWR_AttrName attr Input The target attribute to set for each object in

the target group. See section 3.5 for a list of
available attributes.

const void* value Input The pointer to a single 8 byte attribute value
to set for each object in the target group.

PWR_Status status Output Upon PWR_RET_FAILURE, status contains
information about each failure that occurred.
Pass in NULL if failure information is not
needed.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations succeeded.
PWR_RET_FAILURE Upon FAILURE, one or more operations failed. Exam-

ine PWR_Status status to determine the operations that
failed. All other operations succeeded.

Function Prototype for PWR GrpAttrGetValues()

The PWR_GrpAttrGetValues function is provided to get the value of multiple specified attributes
listed in the PWR_AttrName attrs[] array from each object in a specified group – get multiple
attribute values from multiple objects. The timestamps returned in the PWR_Time ts[] array
should accurately represent, and correspond sequentially, with the time each value returned was
measured. If the function fails for one or more attributes, the PWR_Status status structure re-
turned can be examined for additional information regarding the failure using PWR_StatusPopError
(see page 49). PWR_GrpAttrGetValues will continue to attempt to gather values for the entire
group, even if an error occurs for a subset of the members or attributes requested in the object
group.

int PWR_GrpAttrGetValues(PWR_Grp group,
int count,
const PWR_AttrName attrs[],
void* values,
PWR_Time ts[],
PWR_Status status);

55

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The target group.
int count Input The number of elements in the attrs[] ar-

ray.
const PWR_AttrName
attrs[]

Input The array specifying the set of target at-
tributes to read for each object in the target
group. See section 3.5 for a list of available
attributes.

void* values Output The array of attribute values retrieved. This
should point to caller-allocated storage of
at least (PWR_GrpGetNumObjs()*count*8)
bytes. Upon success, the value read for at-
tribute attrs[i] for the object at index j
within the group will be located at address
(values+(j*count*8)+(i*8)).

PWR_Time ts[] Output The array of timestamps, one timestamp for
each value retrieved. This should point to
caller-allocated storage of at least (PWR_-
GrpGetNumObjs()*count*sizeof(PWR_-
Time)). Upon success, the timestamp of the
value retrieved for attribute attrs[i] for
the object at index j within the group will
be located at ts[(j*count)+i]. Pass in NULL if
timestamps are not needed.

PWR_Status status Output Upon PWR_RET_FAILURE, status contains
information about each failure that occurred.
Pass in NULL if failure information is not
needed.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations succeeded.
PWR_RET_FAILURE Upon FAILURE, one or more operations failed. Exam-

ine PWR_Status status to determine the operations that
failed. All other operations succeeded.

Function Prototype for PWR GrpAttrSetValues()

The PWR_GrpAttrSetValues function is provided to set the value of multiple specified attributes
listed in the (PWR_AttrName attrs[]) array of each object in a specified group – set multiple
attribute values on multiple objects. If the function fails for one or more attributes, the PWR_-
Status status structure returned can be examined for additional information regarding the fail-

56

ure using PWR_StatusPopError (see page 49). PWR_GrpAttrSetValues will continue to attempt
to set values for the entire group and requested attributes, even if an error occurs for a subset of the
members or attributes of that object group.

int PWR_GrpAttrSetValues(PWR_Grp group,
int count,
const PWR_AttrName attrs[],
const void* values,
PWR_Status status);

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The target group.
int count Input The number of elements in the attrs[] and

*values arrays.
const PWR_AttrName
attrs[]

Input The array specifying the set of target at-
tributes to set for each object in the target
group. See section 3.5 for a list of available
attributes.

const void* values Input The array of attribute values to set for each
object in the group. The value to write to
attribute attrs[i] of each object is located
at address (values+(i*8)).

PWR_Status status Output Upon PWR_RET_FAILURE, status contains
information about each failure that occurred.
Pass in NULL if failure information is not
needed.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS, all operations succeeded.
PWR_RET_FAILURE Upon FAILURE, one or more operations failed. Exam-

ine PWR_Status status to determine the operations that
failed. All other operations succeeded.

4.5 Metadata Functions

The metadata functions provide an interface for getting more descriptive information about an
object or attribute, such as estimated measurement accuracy or the list of valid values for a given
attribute. This information is often useful for getting a better understanding of the meaning of
objects and attributes and how to interpret the values read from attributes. While most metadata

57

is read-only information, some metadata is potentially configurable, such as the underlying power
sampling rate used to calculate PWR_ATTR_ENERGY values.

Table 4.2 on page 30 lists the available types of metadata. Not all of the metadata items listed
will be available for every object and attribute pair. The exact set is dependent on the capabilities
of the underlying hardware and Power API implementation. If a requested metadata item is not
available a PWR_RET_NO_ATTRIB error is returned at runtime.

The majority of metadata items will require that both an object instance and attribute name
pair be specified, but a few may be defined for object instances alone. For example, the metadata
strings PWR_MD_NAME, PWR_MD_DESC, and PWR_MD_VENDOR_INFO may be available for individual
object instances, with no associated attribute name specified. In these cases, the attribute name
requested should be set to PWR_ATTR_NOT_SPECIFIED. One important use case for these infor-
mational strings, especially the PWR_MD_VENDOR_INFO string, is for a Power API user to capture
these strings with each run to record configuration and provenance information. For example, a
user may chose to log the PWR_MD_VENDOR_INFO string for the top-level platform object in the
output of each run.

The metadata interface consists of three functions. The PWR_ObjAttrGetMeta and PWR_-
ObjAttrSetMeta functions allow metadata values to be retrieved and set, respectively. The third
function, PWR_MetaValueAtIndex, provides a way to enumerate through an attribute’s list of
available values. This is useful for attributes that have a small, well-defined set of discrete values
(e.g., PWR_ATTR_PSTATE). It is expected that where a set of discrete values can be described in
a logical order that the index ordering is from smallest (lowest) to largest (highest) value. The
remainder of this section describes the metadata functions in more detail.

Function Prototype for PWR ObjAttrGetMeta()

The PWR_ObjAttrGetMeta function returns the requested metadata item for the specified object
or object and attribute name pair. The caller must allocate enough storage to hold the returned
metadata value and pass a pointer to the storage in the value argument. The required size can
be determined by consulting the type column of Table 4.2. In the case of string metadata items
(i.e., type char *), the required string length can be determined by getting the appropriate length
metadata item, which is the original metadata name with the _LEN suffix added. For example, the
required string length for the PWR_MD_VENDOR_INFO string can be determined by retrieving the
PWR_MD_VENDOR_INFO_LEN metadata item.

int PWR_ObjAttrGetMeta(PWR_Obj obj,
PWR_AttrName attr,
PWR_MetaName meta,
void* value);

58

Argument(s) Input Description
and/or
Output

PWR_Obj obj Input The target object.
PWR_AttrName attr Input The target attribute. See the PWR_AttrName

type definition in Section 3.5 for the list of
possible attributes. If object-only metadata
is being requested, this argument should be
set to PWR_ATTR_NOT_SPECIFIED.

PWR_MetaName meta Input The target metadata item to get. See the
PWR MetaName type definition in Section
3.6 for the list of possible metadata items,
with detailed descriptions provided in Ta-
ble 4.2.

void* value Output Pointer to the caller allocated storage to hold
the value of the requested metadata item. See
Table 4.2 for type information.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NO_ATTRIB The attribute specified is not implemented.
PWR_RET_NO_META The metadata specified is not implemented.

Function Prototype for PWR ObjAttrSetMeta()

The PWR_ObjAttrSetMeta function sets the specified metadata item for the target object or object
and attribute name pair. The caller must pass a pointer to the new value for the specified metadata
item in the value argument. The required type for the value can be determined by consulting the
type column of Table 4.2. In the case of string metadata items (i.e., type char *), the maximum
string length can be determined by getting the appropriate length metadata item, which is the
original metadata name with the _LEN suffix added. For example, the maximum string length for
the PWR_MD_VENDOR_INFO string can be determined by retrieving the PWR_MD_VENDOR_INFO_LEN
metadata item.

int PWR_ObjAttrSetMeta(PWR_Obj obj,
PWR_AttrName attr,
PWR_MetaName meta,
const void* value);

59

Argument(s) Input Description
and/or
Output

PWR_Obj obj Input The target object.
PWR_AttrName attr Input The target attribute. See the PWR_AttrName

type definition in Section 3.5 for the list of
possible attributes. If object-only metadata
is being set, this argument should be set to
PWR_ATTR_NOT_SPECIFIED.

PWR_MetaName meta Input The target metadata item to set. See the
PWR MetaName type definition in Section
3.6 for the list of possible metadata items,
with detailed descriptions provided in Ta-
ble 4.2.

const void* value Input Pointer to the new value for the metadata
item. See Table 4.2 for type information.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NO_ATTRIB The attribute specified is not implemented.
PWR_RET_NO_META The metadata specified is not implemented.
PWR_RET_READ_ONLY The metadata specified is not settable.
PWR_RET_BAD_VALUE The value specified is not valid.

Function Prototype for PWR MetaValueAtIndex()

The PWR_MetaValueAtIndex function allows the available values for a given attribute to be
enumerated. It is assumed that the set of valid values is static and has size equal to the value
returned by the PWR_MD_NUM metadata item. Once the value of PWR_MD_NUM is known, PWR_-
MetaValueAtIndex() can be called repeatedly with index from 0 to PWR_MD_NUM - 1 to retrieve
the list of valid values for the target attribute. Each call will return the value at the specified index
as well as a human-readable string representing the value in human readable format.

If an attribute is not enumerable, then PWR_MD_NUM will return 0. In general any attribute that
does not have a small set of discrete valid values will return 0 when PWR MD NUM is requested,
to indicate that the attribute is not enumerable.

int PWR_MetaValueAtIndex(PWR_Obj obj,
PWR_AttrName attr,
unsigned int index,
void* value,
char* value_str);

60

Argument(s) Input Description
and/or
Output

PWR_Obj obj Input The target object.
PWR_AttrName attr Input The target attribute. See the PWR_AttrName

type definition in Section 3.5 for the list of
possible attributes.

unsigned int index Input The index of the metadata item value to look
up. The PWR_MD_NUM metadata item returns
the number of possible values, indexed from
0 to PWR_MD_NUM - 1.

void* value Output Pointer to the caller allocated storage to hold
the value of the requested metadata item
value. See Table 4.2 for type information.
The storage must be sized appropriately for
the metadata value type. If the value is
not required, this argument should be set to
NULL.

char* value_str Output Pointer to the caller allocated storage to
hold the human-readable C-style NULL-
terminated ASCII string representing the
metadata item value. The storage passed in
must have size in bytes of at least the value
returned by the PWR_MD_VALUE_LEN meta-
data item. If the string representation is
not required this argument should be set to
NULL.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NO_ATTRIB The attribute specified is not implemented.
PWR_RET_BAD_INDEX The index specified is not valid.

4.6 Statistics Functions

The statistics functions provide an interface to generate statistics related to specific attributes of
an object or group. The interface allows for generating statistics somewhat real-time or mining
historic statistics, assuming that the necessary data is retained. The PWR_ObjCreateStat and
PWR_GrpCreateStat functions are used to create a PWR_Stat pointer. In the case of either an
object or group, a statistic is directly related to the attribute specified in the create call. Basically, a
tuple of information is provided, an object or group, the attribute (PWR_ATTR_POWER for example,

61

see page 26) that the user would like the statistic for and the statistic (PWR_ATTR_STAT_AVG for
example, see page 30).

If the statistics pointer is used in conjunction with the PWR_StatStart and the PWR_StatStop
calls to start and stop the collection of information that will be used to generate the statistic, the
start member of the PWR_TimePeriod structure must be initialized to PWR_TIME_UNINIT. This
allows the underlying implementation to immediately, and quickly, determine which mode the
interface is being used in, real-time or mining. Using this interface in the real-time mode assumes
either hardware device support or lower layer software support for retaining the information over
the window of time delineated by the start and stop calls. The user can collect statistics after
calling start, and before calling stop by using PWR_StatGetValue when the statistic pointer was
created with PWR_ObjCreateStat or PWR_StatGetValues when the statistic pointer was created
with PWR_GrpCreateStat, notice the plural values in the group call. If stop has not been called
on the statistic pointer each time the user requests statistics, the start time, if pertinent, will be the
time start was called on the statistic pointer and the stop time, again if pertinent, will be when
the call was made to retrieve the statistic (see page 30 for details regarding the PWR_TimePeriod
structure). Once stop is called on the statistic pointer any call to retrieve the statistic will be over
the window defined by the start and stop calls.

If supported, collecting historic information is supported using the same interface but with-
out the use of PWR_StatStart or PWR_StatStop. To collect historic information, again assum-
ing it is retained, the user creates an object or group statistics pointer (PWR_ObjCreateStat or
PWR_GrpCreateStat) followed by using PWR_StatGetValue, for an object statistic, or PWR_-
StatGetValues for a group statistic. The important difference is that the PWR_TimePeriod struc-
ture is populated with the start and stop times delineating the historic window that the statistic
requested will be calculated over. Note that the times the user requests may not be available.
The interface is required to return the requested statistic calculated over as close to the requested
time window as possible. The interface is additionally required to return in the PWR_TimePeriod
structure the times that were actually used in calculating the statistic that was returned. If the
instant member of the PWR_TimePeriod structure is not pertinent or available it should be set to
PWR_TIME_UNKNOWN.

Function Prototype for PWR ObjCreateStat()

The PWR_ObjCreateStat function is used to create the statistics pointer that will be used for all
subsequent statistics gathering for a single object.

PWR_Stat PWR_ObjCreateStat(PWR_Obj object,
PWR_AttrName name,
PWR_AttrStat statistic);

62

Argument(s) Input Description
and/or
Output

PWR_Obj object Input The object to act on.
PWR_AttrName name Input The attribute to act on, see the PWR_-

AttrName type definition in section 3.5.
PWR_AttrStat statistic Input The desired statistic for the specified at-

tribute, see PWR_AttrStat type definition in
section 3.9.

Return Code(s) Description
PWR_Stat Stat for that object, attribute statistic triple upon SUCCESS.
NULL Upon FAILURE

Function Prototype for PWR GrpCreateStat()

The PWR_GrpCreateStat function is used to create the statistics pointer that will be used for all
subsequent statistics gathering for a group of objects.

PWR_Stat PWR_GrpCreateStat(PWR_Grp group,
PWR_AttrName name,
PWR_AttrStat statistic);

Argument(s) Input Description
and/or
Output

PWR_Grp group Input The group to act on.
PWR_AttrName name Input The attribute to act on, see the PWR_-

AttrName type definition in section 3.5.
PWR_AttrStat statistic Input The desired statistic for the specified at-

tribute, see PWR_AttrStat type definition in
section 3.9.

Return Code(s) Description
PWR_Stat Stat for that object, attribute statistic triple upon SUCCESS.
NULL Upon FAILURE

Function Prototype for PWR StatStart()

The PWR_StatStart function is used to indicate to a device or software layer to start the window
of time that the statistic requested will be calculated over.

63

PWR_Stat PWR_StatStart(PWR_Stat statObj);

Argument(s) Input Description
and/or
Output

PWR_Stat statObj Input The statistics object to begin collecting the
specified statistic for (specified in PWR_-
ObjCreateStat).

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR StatStop()

The PWR_StatStop function is used to indicate to a device or software layer to stop the window
of time that the statistic requested will be calculated over.

PWR_Stat PWR_StatStop(PWR_Stat statObj);

Argument(s) Input Description
and/or
Output

PWR_Stat statObj Input The statistics object to stop collecting the
specified statistic for (specified in PWR_-
ObjCreateStat).

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon SUCCESS

Function Prototype for PWR StatClear()

The PWR_StatClear function is used to indicate to a device or software layer to clear or reset the
window of time that the statistic requested will be calculated over. The clear effectively restarts
the window, so there is no need to call PWR_StatStart again.

PWR_Stat PWR_StatClear(PWR_Stat statObj);

64

Argument(s) Input Description
and/or
Output

PWR_Stat statObj Input The statistics object to clear (effectively re-
set) for the specified statistic (specified in
PWR_ObjCreateStat).

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR StatGetValue()

The PWR_StatGetValue function is used to retrieve the statistic and related time stamp informa-
tion from the statistics pointer created using PWR_ObjCreateStat. Note that the PWR_StatGetValue
call operates on single objects only, not groups of objects. If a single value return is desired for a
group of objects, the PWR_StatGetReduce call on page 66 should be used.

PWR_Stat PWR_StatGetValue(PWR_Stat statObj,
double* value,
PWR_TimePeriod* statTimes);

Argument(s) Input Description
and/or
Output

PWR_Stat statObj Input The statistics object to collect the statistic for
(the object, attribute stat triple is specified in
PWR_ObjCreateStat).

double* value Output pointer to space (double) to store the statistic
PWR_TimePeriod*
statTimes

Input/Output Time structure that contains the timestamps
pertinent to the specific statistic, see page 30.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR StatGetValues()

The PWR_StatGetValues function is used to retrieve the statistic and related time stamp informa-
tion from the statistics pointer created using PWR_GrpCreateStat.

65

PWR_Stat PWR_StatGetValues(PWR_Stat statObj,
double values[],
PWR_TimePeriod statTimes[]);

Argument(s) Input Description
and/or
Output

PWR_Stat statObj Input The statistics object to collect the statistic for
(the group, attribute stat triple is specified in
PWR_GrpCreateStat).

double values[] Output Space allocated by user to hold array of val-
ues (statistics)

PWR_TimePeriod
statTimes[]

Input/Output Space allocated by user to hold array of time
structures that contains the timestamps perti-
nent to each specific statistic, see page 30

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR StatGetReduce()

The PWR_StatGetReduce function is used to retrieve the statistic and related time stamp infor-
mation from the statistics pointer created using PWR_GrpCreateStat and perform a reduction
operation on the result. The type of reduction performed is determined by the statistic dictated for
the PWR Stat when it was created.

The value returned from a call to PWR_StatGetReduce will be equivalent to the statistic that
would be calculated by calling PWR_GrpAttrGetValue and performing the operation on the re-
turned set of values (one per group member) for the chosen attribute. PWR_StatGetReduce is
provided such that optimizations that may be possible when calculating a given statistic can be
utilized. An example of such an operation would be calculating an average, where gathering the
values is done through a tree topology overlay network, where averages can be calculated at each
parent of multiple children in the tree. Note that the implementation of PWR_StatGetReduce can
be done in its more simplistic form by calling PWR GrpAttrGetValue and performing the required
operation on the returned set of values to return the requested reduction operation.

For certain reduction operations, some elements of the time stamp (PWR_TimePeriod) may not
be valid output. For example, in the case of a averaging reduction, an associated “instant” time
stamp is not a useful value. For Min and Max operations, the “instant” time stamp is useful and
will represent the time at which the maximum or minimum was observed. In all cases the start and
stop time stamps in the PWR_TimePeriod will represent the time window over which the the value
was calculated.

66

PWR_Stat PWR_StatGetReduce(PWR_Stat statObj,
double* value,
PWR_TimePeriod* statTimes);

Argument(s) Input Description
and/or
Output
Input

PWR_Stat statObj Input The statistics object to collect the statistic for
(the object group, attribute stat triple is spec-
ified in PWR_GrpCreateStat).

double* value Output pointer to space (double) to store the statistic
PWR_TimePeriod*
statTimes

Input/Output Time structure that contains the timestamps
pertinent to the specific statistic, see page 30.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR StatDestroy()

The PWR_StatDestroy function is used to destroy (clean up) the statistics pointer created using
PWR_ObjCreateStat or PWR_GrpCreateStat.

PWR_Stat PWR_StatDestroy(PWR_Stat statObj);

Argument(s) Input Description
and/or
Output

PWR_Stat statObj Input The statistics object to destroy (clean up)

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE

4.7 Version Functions

The PWR_GetMajorVersion and PWR_GetMinorVersion functions are used to get the major and
minor portions of the specification version supported by the implementation. Users can make
decisions regarding available functionality based on the version number supported.

67

Function Prototype for PWR GetMajorVersion()

The PWR_GetMajorVersion function is used to get the major version number portion of the ver-
sion number of the specification supported by the implementation.

int PWR_GetMajorVersion();

Return Code(s) Description
int Upon SUCCESS, integer representation of major portion of

version number
PWR_RET_FAILURE Upon FAILURE

Function Prototype for PWR GetMinorVersion()

The PWR_GetMinorVersion function is used to get the minor version portion of the version num-
ber of the specification supported by the implementation.

int PWR_GetMinorVersion();

Return Code(s) Description
int Upon SUCCESS, integer representation of minor portion of

version number
PWR_RET_FAILURE Upon FAILURE

4.8 Big List of Attributes

The following is the master list of Attributes available to the user. The attributes valid for specific
interfaces are listed in the appropriate section in Chapter 6.

68

Table 4.1: Complete List of All Supported Attributes

Attribute Set Type Description
and/or

Get
PWR_ATTR_PSTATE Set/Get uint64 t The current P-state for the object speci-

fied (typically processors but for use with
other component types when applicable).

PWR_ATTR_CSTATE Set/Get uint64 t The current C-state for the object speci-
fied (typically processors but for use with
other component types when applicable).

PWR_ATTR_CSTATE_LIMIT Set/Get uint64 t The lowest C-state allowed for the object
specified (typically processors but for use
with other component types when appli-
cable).

PWR_ATTR_SSTATE Set/Get uint64 t The current S-state for the object speci-
fied (typically processors but for use with
other component types when applicable).

PWR_ATTR_CURRENT Get double Discrete current value in amps. The cur-
rent value should be the value measured
as close as possible to the time of the
function call.

PWR_ATTR_VOLTAGE Get double Discrete voltage value in volts. The volt-
age value should be the value measured as
close as possible to the time of the func-
tion call.

PWR_ATTR_POWER Get double Discrete power value in watts. The power
value should be the value measured as
close as possible to the time of the func-
tion call.

PWR_ATTR_POWER_LIMIT_MIN Set/Get double Minimum power limit (floor, lower
bound) for the specified object in watts.

PWR_ATTR_POWER_LIMIT_MAX Set/Get double Maximum power limit (ceiling, upper
bound) for the specified object (as in
power cap) in watts.

PWR_ATTR_FREQ Set/Get double The current operating frequency value for
the specified object in Hz (cycles per sec-
ond).

PWR_ATTR_FREQ_LIMIT_MIN Set/Get double Minimum operating frequency limit for
the specified object in Hz (cycles per sec-
ond).

Continued on next page

69

Table 4.1 – continued from previous page
Attribute Set Type Description

and/or
Get

PWR_ATTR_FREQ_LIMIT_MAX Set/Get double Maximum operating frequency limit for
the specified object in Hz (cycles per sec-
ond).

PWR_ATTR_ENERGY Get double The cumulative energy used by the spec-
ified object in joules. Note that two
attribute get calls are typically required
to obtain the energy consumed by the
specified object. Subtracting the energy
value obtained from the first call from
the energy value obtained from the sec-
ond call produces the energy used for
the object from the timestamp of the first
value through the timestamp of the sec-
ond value.

PWR_ATTR_TEMP Get double The current temperature value for the
specified object in degrees Celsius.

PWR_ATTR_OS_ID Get uint64 t The operating system ID that corresponds
to the object. For example, a runtime sys-
tem may need to figure out which Power
API PWR_OBJ_CORE objects correspond
to the cores that it is controlling. This at-
tribute provides a linkage between Power
API objects and operating system IDs.

PWR_ATTR_THROTTLED_TIME Get uint64 t The cumulative time in nanoseconds that
the specified object’s performance was
purposefully slowed in order to meet
some constraint, such as a power cap.

PWR_ATTR_THROTTLED_COUNT Get uint64 t The cumulative count of the number of
times that the specified object’s perfor-
mance was purposefully slowed in order
to meet some constraint, such as a power
cap.

4.9 Big List of Metadata

70

Table 4.2: Complete List of All Metadata Names

Metadata Set Type Description
and/or (SaA = Same

Get as Attribute)
PWR_MD_NUM Get uint64 t Number of values supported. This is

only relevant for attributes with a discrete
set of values (e.g., PWR_ATTR_PSTATE).
Other attributes return 0.

PWR_MD_MIN Get SaA Minimum value supported.
PWR_MD_MAX Get SaA Maximum value supported.
PWR_MD_PRECISION Get uint64 t Number of significant digits in values.
PWR_MD_ACCURACY Get double Estimated percent error +/- of measured

vs. actual values.
PWR_MD_UPDATE_RATE Set/Get double Rate values become visible to user, in up-

dates per second. Getting or setting a
value at a rate higher than this is not use-
ful.

PWR_MD_SAMPLE_RATE Set/Get double Rate of underlying sampling, in samples
per second. This is only relevant for val-
ues derived over time (e.g., PWR_ATTR_-
ENERGY).

PWR_MD_TIME_WINDOW Set/Get PWR_Time The time window used to calculate the
value returned or relevant to an attribute.
For example, the “instantaneous” PWR_-
ATTR_POWER values reported may actu-
ally be averaged over a short time win-
dow. Power caps are also enforced with
respect to a target time window.

PWR_MD_TS_LATENCY Get PWR_Time Estimate of the time required to get or set
an attribute. This is useful to estimate
completion time for an operation a priori.
A value of zero should be returned when
the get/set is instantaneous.

PWR_MD_TS_ACCURACY Get PWR_Time Estimated accuracy of returned times-
tamps, represented as +/- the PWR_Time
value returned.

Continued on next page

71

Table 4.2 – continued from previous page
Metadata Set Type Description

and/or (SaA = Same
Get as Attribute)

PWR_MD_MAX_LEN Get uint64 t The maximum string length that will be
returned by the metadata interface. All
other string lengths (metadata items end-
ing in “ LEN”) will be less than or equal
to this value. The value of PWR_MD_MAX_-
LEN will be less than or equal to PWR_-
MAX_STRING_LEN.

PWR_MD_NAME_LEN Get uint64 t Length of the attribute name string, in
bytes. This is the buffer length needed to
store the string returned when PWR_MD_-
NAME is requested.

PWR_MD_NAME Get char * Attribute name string. This is a C-style
NULL-terminated ASCII string. This
provides a human readable name for the
attribute. The string length is given by
PWR_MD_NAME_LEN.

PWR_MD_DESC_LEN Get uint64 t Length of the attribute description string,
in bytes. This is the buffer length needed
to store the string returned when PWR_-
MD_DESC is requested.

PWR_MD_DESC Get char * Attribute description string. This is a
C-style NULL-terminated ASCII string.
This provides a human readable descrip-
tion of the attribute that is more descrip-
tive than the attribute’s name alone. The
string length is given by PWR_MD_DESC_-
LEN.

PWR_MD_VALUE_LEN Get uint64 t Maximum length of the value strings re-
turned by PWR_MetaValueAtIndex. This
can be used to discover the buffer
size that needs to be passed to PWR_-
MetaValueAtIndex via the value_str
argument.

PWR_MD_VENDOR_INFO_LEN Get uint64 t Length of the vendor information string,
in bytes. This is the buffer length needed
to store the string returned when PWR_-
MD_VENDOR_INFO is requested.

Continued on next page

72

Table 4.2 – continued from previous page
Metadata Set Type Description

and/or (SaA = Same
Get as Attribute)

PWR_MD_VENDOR_INFO Get char * Vendor provided information string. This
is a C-style NULL-terminated ASCII
string. This may be used to convey
part numbers, configuration, or other non-
standard information. The string length is
given by PWR_MD_VENDOR_INFO_LEN.

PWR_MD_MEASURE_METHOD Get uint64 t Denotes the measurement method: an ac-
tual measurement (returned value = 0) or
a model based estimate (return value = 1).
Other values > 1 may be used to denote
multiple vendor specific models in the sit-
uation where multiple models may exist.

73

74

Chapter 5

High-Level (Common) Functions

This chapter includes specifications for High-Level functions that are common for more than one
of the Role/System pair interfaces specified in chapter 6. The implementation may choose to selec-
tively provide implementations for these functions, but all should be stubbed out or available. If an
implementation is not provided the function should simply return PWR_RET_NOT_IMPLEMENTED.

5.1 Report Functions

Report functions are intended to provide a number of Role/System pairs with the ability to produce
a range of reports. These particular functions target historic data, typically data that has been
recorded in logs or some type of database. These functions are considered High-Level and abstract
the object and group concepts found in the Core functions. Information is requested based on
higher level concepts such as job, application or user ID. These functions require the user to provide
a context which is used for determining whether the calling user can access the requested data.

Function Prototype PWR GetReportByID()

The PWR_GetReportByID function is provided to allow the collection of statistics information
based on the ID types defined in PWR_ID in Section 3.9. A PWR_ID type must be supplied with
char* pointer pointing to a valid ID for the specified type. The PWR_AttrName, PWR_AttrStat
pair determines the statistic that will be reported. For example, the user of this function might
desire the maximum power used over a period of time one week prior to the current time. The
user would specify the id, id_type, PWR_ATTR_POWER for the attribute and PWR_STAT_MAX for
the statistic and populate the start and stop members of the PWR_TimePeriod structure appro-
priately. The times specified must be prior to the time when the function is called. The function
returns the actual start and stop times if they differ from the times the user inputs. The implemen-
tation should return the time available time period that most closely matches the requested time
period. The implementation determines the supported attribute combinations. The context of the
calling user will determine if the user has the necessary privilege to access this information. This
functionality assumes the system has a data retention capability exposed to the user.

75

int PWR_GetReportByID(PWR_Cntxt context,
const char* id,
PWR_ID id_type,
PWR_AttrName name,
PWR_AttrStat stat,
double* value
PWR_TimePeriod* ReportTimes);

Argument(s) Input Description
and/or
Output

PWR_Cntxt context Input The calling user’s context which can be
used to determine data access for individual
role/user combinations.

const char* id Input The ID that the statistic will be collected for.
PWR_ID id_type Input The type of ID used to interpret the ID input.
PWR_AttrName name Input The name of the attribute the statistic will be

based on.
PWR_AttrStat stat Input The desired statistic.
double* value Output Pointer to a double that will contain the

statistic.
PWR_TimePeriod*
ReportTimes

Input/Output The user specified window for the report
(start and stop times must be specified).

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE (Function is implemented but call failed)
PWR_RET_NOT_IMPLEMENTED Indicates that the combination of the attribute statistic pair

and ID is not supported by this implementation.

76

Chapter 6

Role/System Interfaces

This chapter includes the specifications for all of the Role/System pair interfaces depicted in fig-
ure 1.1 on page 15. Each interface section first outlines the purpose the interface serves. Core
functionality for each interface is exposed through the attribute functions (see section 4.4). Each
interface section includes a table of the supported attributes for that interface. The table contains
the suggested attributes that the implementation should support for each interface. The implemen-
tation can choose to implement additional, some subset, or none of the attributes listed for that
interface. As previously mentioned, the implementation must implement all attribute functions
whether individual attributes are supported or not. If a particular attribute is not supported for that
interface the implementation should return PWR_RET_NOT_IMPLEMENTED.

In addition to the attribute functions, other Core (Common) functions are included in this spec-
ification. Each individual interface section will enumerate the Core (Common) functions that the
specification suggests are applicable for that interface (see chapter 4 for details regarding Core
(Common) functions). Again, the implementation must implement these functions but may choose
not to support them for a particular interface.

Each section also includes the High-Level (Common) functions that are applicable to that sec-
tion (see chapter 6.10.3 for details regarding High-Level (Common) functions). These functions
are functions that are applicable to more than one Role/System pair interface.

Finally, individual interface sections may also contain interface specific functions. These are
functions that, at the time of their addition to the specification, are specific to one Role/System
pair. This does not indicate that the function cannot be supported by an implementation for other
Role/System pairs, only that the authors did not recognize a use for other interfaces at the time of
addition to the specification.

6.1 Operating System, Hardware Interface

The Operating system/Hardware Interface is intended to be a low level interface that exposes power
and energy relevant architecture features of the underlying hardware, such as the ability to measure
and control power and energy characteristics of underlying components. In some cases this infor-
mation will be abstracted for presentation to the application through the Application/Operating

77

System API interface (section 6.3) or the resource manager through the Resource Manager/Oper-
ating System API (section 6.5). While we have chosen the term Operating system as part of this
interface name, we are not strictly implying that all interfaces described in this section should be
limited to the domain of the operating system. Additionally, we are not implying that this interface
requires specific privileges, although many low level operations require elevated privileges. Por-
tions of the system software stack, like a runtime system, may use many of the interfaces described
in this section.

6.1.1 Supported Attributes

A significant amount of functionality for this interface is exposed through the attribute functions
(section 4.4). The attribute functions in conjunction with the following attributes (Table 6.1) expose
numerous measurement (get) and control (set) capabilities to the operating system.

Table 6.1: Operating System, Hardware - Supported Attributes

Attribute Set Type Description
and/or

Get
PWR_ATTR_PSTATE Set/Get uint64 t The current P-state for the object

specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CSTATE Set/Get uint64 t The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CSTATE_LIMIT Set/Get uint64 t The lowest C-state allowed for the
object specified (typically processors
but for use with other component
types when applicable).

PWR_ATTR_SSTATE Set/Get uint64 t The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CURRENT Get double Discrete current value in amps. The
current value should be the value
measured as close as possible to the
time of the function call.

Continued on next page

78

Table 6.1 – continued from previous page
Attribute Set Type Description

and/or
Get

PWR_ATTR_VOLTAGE Get double Discrete voltage value in volts. The
voltage value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_POWER Get double Discrete power value in watts. The
power value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_POWER_LIMIT_MIN Set/Get double Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_POWER_LIMIT_MAX Set/Get double Maximum power limit (ceiling, up-
per bound) for the specified object
(as in power cap) in watts.

PWR_ATTR_FREQ Set/Get double The current operating frequency
value for the specified object in Hz
(cycles per second).

PWR_ATTR_FREQ_LIMIT_MIN Set/Get double Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FREQ_LIMIT_MAX Set/Get double Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_ENERGY Get double The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TEMP Get double The current temperature value for the
specified object in degrees Celsius.

79

6.1.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 4.2
– ALL

• Group Functions - section 4.3
– ALL

• Attribute Functions - section 4.4
– ALL

• Metadata Functions - section 4.5
– ALL

• Statistics Functions - section 4.6
– ALL - for real time queries only

6.1.3 Supported High-Level (Common) Functions

6.1.4 Interface Specific Functions

Function Prototype PWR StateTransitDelay()

The PWR_StateTransitDelay function returns the expected latency to transition between two
valid states in nanoseconds. It is up to the vendor to provide accurate estimates for hardware. For
example, P-state transitions could be given a single latency, even though some transitions might
take less time (e.g., high voltage to lower voltage versus low to high). The desired state must be
expressed using a PWR_OperState structure described in section 3.10 on page 31. This transition
time may be a worst case latency time, and may be supplied by the hardware manufacturer (through
the BIOS or other reporting mechanism). It is expected that this delay is an estimate of the time
required to transition between states, not an estimate of the time that the core is unavailable for use
(which may be a shorter interval than the time for the changes to take effect).

int PWR_StateTransitDelay(PWR_Obj obj,
PWR_OperState start_state,
PWR_OperState end_state,
PWR_Time *latency);

80

Argument(s) Input Description
and/or
Output

PWR_Ob obj Input The object that the state transition
would be applied to.

PWR_OperState start_state Input The state at the beginning of the tran-
sition.

PWR_OperState end_state Input The state at the end of the transition.
PWR_Time *latency Output Pointer to a double that will contain the

transition latency in nanoseconds upon
return.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE

81

6.2 Monitor and Control, Hardware Interface

The Monitor and Control/Hardware interface is targeted to support a critical function on HPC plat-
forms (systems monitoring and management) often embodied in Reliability Availability and Ser-
viceability (RAS) systems. RAS systems must evolve to measure and control power and energy
relevant aspects of the system and serve this information and capability to administrators (Adminis-
trator/Monitor and Control Interface - section 6.7), resource managers (Resource Manager/Monitor
and Control Interface - section 6.6), accounting (Accounting/Monitor and Control Interface - sec-
tion 6.9) and users (User/Monitor and Control Interface - section 6.10). The Monitor and Control
Interface serves more other roles than any other system in this specification. The base level func-
tionality that is exposed through this interface is very similar to the Operating System/Hardware
Interface (section 6.1) but the functional responsibilities of the role differ considerably. Some of
the interfaces described in this specification imply data retention, or database, functionality. The
monitor and control software (RAS system) is a prime candidate to serve this purpose. Low level
power and energy data can be mined through the interfaces documented in this section and stored
in raw or processed form in a database and made available for historic queries by other roles.

6.2.1 Supported Attributes

As in the Operating System/Hardware interface (section 6.1) a significant amount of functionality
for this interface is exposed through the attribute functions (section 4.4). The attribute functions
in conjunction with the following attributes (Table 6.2) expose numerous measurement (get) and
control (set) capabilities to the monitor and control system.

Table 6.2: Monitor and Control, Hardware - Supported Attributes

Attribute Set Type Description
and/or

Get
PWR_ATTR_PSTATE Set/Get uint64 t The current P-state for the object

specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CSTATE Set/Get uint64 t The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CSTATE_LIMIT Set/Get uint64 t The lowest C-state allowed for the
object specified (typically processors
but for use with other component
types when applicable).

Continued on next page

82

Table 6.2 – continued from previous page
Attribute Set Type Description

and/or
Get

PWR_ATTR_SSTATE Set/Get uint64 t The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CURRENT Get double Discrete current value in amps. The
current value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_VOLTAGE Get double Discrete voltage value in volts. The
voltage value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_POWER Get double Discrete power value in watts. The
power value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_POWER_LIMIT_MIN Set/Get double Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_POWER_LIMIT_MAX Set/Get double Maximum power limit (ceiling, up-
per bound) for the specified object
(as in power cap) in watts.

PWR_ATTR_FREQ Set/Get double The current operating frequency
value for the specified object in Hz
(cycles per second).

PWR_ATTR_FREQ_LIMIT_MIN Set/Get double Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FREQ_LIMIT_MAX Set/Get double Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

Continued on next page

83

Table 6.2 – continued from previous page
Attribute Set Type Description

and/or
Get

PWR_ATTR_ENERGY Get double The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TEMP Get double The current temperature value for the
specified object in degrees Celsius.

6.2.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 4.2
– ALL

• Group Functions - section 4.3
– ALL

• Attribute Functions - section 4.4
– ALL

• Metadata Functions - section 4.5
– ALL

• Statistics Functions - section 4.6
– ALL

6.2.3 Supported High-Level (Common) Functions

6.2.4 Interface Specific Functions

84

6.3 Application, Operating System Interface

The Application/Operating System Interface is intended to expose the appropriate level of infor-
mation (measurement) and control to the application user or application library. This interface
may also provide functionality appropriate for other levels of system software, such as a runtime
system. The capabilities included in this interface concentrate on providing abstractions that al-
low an application or library to provide information that can be used to make intelligent decisions
regarding performance, power and energy efficiency.

An important aspect of this interface is accommodating portable application (or library) code.
Generalized concepts such as performance and sleep states that hardware can operate in are used
rather than architecture specific concepts such as hardware P-States. The operating system, or
privileged layer, is responsible for appropriately translating the abstracted information provided
by the application layer into the hardware specific details necessary for accomplishing the desired
functionality (or not). In essence the operating system, or privileged layer, acts as the hardware
translator for the application.

6.3.1 Supported Attributes

A significant amount of functionality for this interface is exposed through the attribute functions
(section 4.4). The attributes functions in conjunction with the following attributes (Table 6.3)
expose numerous measurement and control capabilities to the application, application libraries or
possibly portions of runtime systems.

Table 6.3: Application, Operating System - Supported Attributes

Attribute Set Type Description
and/or

Get
PWR_ATTR_POWER Get double Discrete power value in watts. The

power value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_POWER_LIMIT_MIN Set/Get double Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_POWER_LIMIT_MAX Set/Get double Maximum power limit (ceiling, up-
per bound) for the specified object
(as in power cap) in watts.

PWR_ATTR_FREQ Set/Get double The current operating frequency
value for the specified object in Hz
(cycles per second).

Continued on next page

85

Table 6.3 – continued from previous page
Attribute Set Type Description

and/or
Get

PWR_ATTR_FREQ_LIMIT_MIN Set/Get double Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FREQ_LIMIT_MAX Set/Get double Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_ENERGY Get double The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TEMP Get double The current temperature value for the
specified object in degrees Celsius.

6.3.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 4.2
– ALL

• Group Functions - section 4.3
– ALL

• Attribute Functions - section 4.4
– ALL

• Metadata Functions - section 4.5
– ALL

• Statistics Functions - section 4.6
– ALL - for real time queries only

86

6.3.3 Supported High-Level (Common) Functions

6.3.4 Interface Specific Functions

Function Prototype PWR AppTuningHint()

The PWR_AppTuningHint function is intended to be used by an application, or application library,
to supply power relevant hints to the operating system (or a runtime layer). It is intentional that
many of these hints do not directly imply that a power or energy adjustment will be made. The
PWR_RegionHint hints are intended to be used by the application layer to indicate that it is enter-
ing a SERIAL, PARALLEL, COMPUTE (computation intensive) or COMMUNICATE, I/O or MEM_-
BOUND (communication intensive, I/O intensive or memory bound) region. The PWR_RegionHint
type is described in section 3.11 on page 31. It is intended that these hints may be leveraged to
provide some performance or power benefit, for example, a hint may indicate that an intensely par-
allel region is about to happen, this may motivate the proactive migration of tasks to an accelerator
or preemptively speed up cooling fans to proactively deal with the thermal load.

PWR_RegionIntensity, described in section 3.11 on page 32 can be used for finer-grained
hints than are possible with PWR_RegionHint. It is intended to allow for more explicit hints as to
the intensity of the described region behavior. For example, it can be used to describe the intensity
of a memory bound region, which can be utilized by the runtime or operating system in deciding
what resources to allocate for a given power budget.

It is expected that the implementation will use these hints whenever possible to increase ap-
plication performance while honoring energy/power targets or increase energy efficiency without
incurring significant performance penalties. PWR_RegionIntensity may be set to PWR_REGION_-
INT_NONE if it is desirable for the operating system or a runtime to determine the intensity of
resource usage dependent on the given hint. PWR_REGION_INT_NONE can also be used when the
intensity of the described behavior is not known. This parameter may be ignored by the OS.

int PWR_AppTuningHint(PWR_Obj obj,
PWR_RegionHint hint,
PWR_RegionIntensity level);

Argument(s) Input Description
and/or
Output

PWR_Obj obj Input The object that the hint applies to.
PWR_RegionHint hint Input The hint corresponding to the code

(behavioral) region being entered.
PWR_RegionIntensity level Input An abstraction of the intensity of the

region.

87

Return Code(s) Description
PWR_ERR_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested operation

Function Prototype PWR SetSleepStateLimit()

PWR_SetSleepStateLimit allows the application to request that, when possible, the OS restrict
the deepest sleep state (e.g. C-state) that the hardware can enter. It is important to note that
this function does not place the object in a sleep state, it only suggests to the Operating System (or
privileged layer) that it limit the deepest possible sleep state that the object can enter. The operating
system or hardware are responsible for determining when hardware should be put to sleep. This
is not required to be honored by the OS or HW, but serves as a hint to the OS as to the latency
that can be tolerated when transitioning between sleep and active states. As the application cannot
typically control the entry of hardware into sleep states this function is meant to provide a method
for an application to express its latency tolerance in an environment where resources may be put
into sleep states without the application’s knowledge.

Applications calling PWR_SetSleepStateLimit are expected to make use of the PWR_WakeUpLatency
call on page 88 to provide information needed to determine the desired sleep state level. Sleep
states must conform to the PWR_SleepState type in section 3.11 on page 32.

int PWR_SetSleepStateLimit(PWR_Obj obj,
PWR_SleepState state);

Argument(s) Input Description
and/or
Output

PWR_Obj obj Input The object to set the sleep state on.
PWR_SleepState state Input The sleep state to set as the maximum deep-

est sleep allowed.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested operation

Function Prototype for PWR WakeUpLatency()

The PWR WakeUpLatency function returns a value in nanoseconds that corresponds to the time
required to resume normal operation when transitioning out of a given sleep state. If the supplied

88

PWR_Obj does not support sleeping or the requested sleep state is not available then the function
may return PWR_RET_FAILURE.

int PWR_WakeUpLatency(PWR_Obj obj,
PWR_SleepState state
PWR_Time* latency);

Argument(s) Input Description
and/or
Output

PWR_Obj obj Input The object to query for latency.
PWR_SleepState state Input The sleep state to transition out of.
PWR_Time* latency Output The latency of the transition in nanoseconds.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested operation

Advice to users: This function is useful when determining what sleep states can be exploited
when knowledge of the length of time that certain operations (most likely remote ones) can be
expected to take. Use of this function is intended to be paired with the SetSleepStateLimit
function. Although users cannot use this function to place hardware into a sleep state, when
used in conjunction with SetSleepStateLimit it can be used to suggest to an actor placing the
hardware in a sleep state which state may be the most desirable. End of Advice to users.

Function Prototype PWR RecommendSleepState()

This is a convenience function for cases in which an application’s maximum tolerable latency is
known for a given region and a deepest possible sleep state for use with the SetSleepStateLimit
function is desired. Calling RecommendSleepState with the known latency will return the sleep
state that has the closest latency to the desired value without exceeding it. Returned sleep states
from this function conform to the PWR_SleepState type in section 3.11 on page 32.

int PWR_RecommendSleepState(PWR_Obj,
PWR_Time latency
PWR_SleepState* state);

89

Argument(s) Input Description
and/or
Output

PWR_Obj obj Input The object to set the sleep state on.
PWR_Time latency Input The amount of latency tolerable to the appli-

cation in nanoseconds.
PWR_SleepState* state Output The deepest sleep state recommended to be

used as a limit.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested operation

Function Prototype for PWR SetPerfState()

The PWR_SetPerfState function is used to request that an object change its performance level.
The operating system is responsible for translating the abstracted PWR_PerfState value into an
appropriate hardware-specific performance level (e.g. a CPU P-State). Setting the performance
state of an object is not guaranteed to result in the requested change. The operating system may
choose to ignore it or the hardware may not honor the request. The user should not expect that
once a performance state has been set that it will not change in the future. Multiple actors may also
set the performance state, including in some cases, remote actors.

int PWR_SetPerfState(PWR_Obj obj,
PWR_PerfState state);

Argument(s) Input Description
and/or
Output

PWR_Obj obj Input The object to set the performance state on.
PWR_PerfState state Input The performance state to set the object to.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested operation

90

Function Prototype for PWR GetPerfState()

The PWR_GetPerfState function returns the performance state for any given object. The value
that is returned is an abstracted value based on the real hardware state of the object that is mapped
to the closest PWR_PerfState value. Objects must return PWR_RET_FAILURE if they do not support
operating in different states.

int PWR_GetPerfState(PWR_Obj obj,
PWR_PerfState* state);

Argument(s) Input Description
and/or
Output

PWR_Obj obj Input The object to get the current performance
state of.

PWR_PerfState* state Output The performance state of the object.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested operation

Function Prototype for PWR GetSleepState()

The PWR_GetSleepState function returns the current sleep state for any given object.

int PWR_GetSleepState(PWR_Obj obj,
PWR_SleepState* state);

Argument(s) Input Description
and/or
Output

PWR_Obj obj Input The object to get the current sleep state of.
PWR_PerfState* state Output The sleep state of the object.

Return Code(s) Description
PWR_RET_SUCCESS Upon SUCCESS
PWR_RET_FAILURE Upon FAILURE
PWR_RET_NOT_IMPLEMENTED Object does not support the requested operation

91

6.4 User, Resource Manager Interface

The User/Resource Manger Interface is intended to support access to power and energy related
information, specifically pertaining to jobs, relevant to an HPC user. This interface is similar to
the User/Monitor and Control Interface (section 6.10) but in this case assumes that the Resource
Manager has a data retention capability (database) available to query energy and statistics infor-
mation based on job or user Id. The availability of this information is implementation dependent.
Alternatively, if the Resource Manager does not have a database capability, the same interfaces
are available to the user role through the User/Monitor and Control System Interface (section 6.10
which may provide this functionality.

6.4.1 Supported Attributes

The Power API specification does not currently recommend that any of the attributes be exposed
to the user role. The implementation is free to expose any attribute they determine is useful to the
user role without violating the specification.

6.4.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 4.2
– ALL

• Group Functions - section 4.3
– ALL

• Metadata Functions - section 4.5
– ALL

• Statistics Functions - section 4.6
– ALL - for historic queries only

6.4.3 Supported High-Level (Common) Functions

• Report Functions - section 5.1
– ALL

6.4.4 Interface Specific Functions

92

6.5 Resource Manager, Operating System Interface

The Resource Manager/Operating System Interface is intended to access both low level and ab-
stracted information from the operating system. Similar or additional information may be available
from the monitor and control system (section 6.6) depending on the implementation. The resource
manager is in a somewhat unique position of providing a range of functionality depending on the
specific implementation. The resource manager role includes functionality such as batch sched-
ulers and allocators as well as potential portions of tightly integrated runtime and launch systems.
The resource manager may require fairly low level measurement information to make decisions
and potentially store historic information for consumption by the user role (for example). The
resource manager may also play a very large role in controlling power and energy pertinent func-
tionally on both a application and platform basis in response to facility restrictions (power capping
or energy aware scheduling for example).

6.5.1 Supported Attributes

A significant amount of functionality for this interface is exposed through the attribute functions
(section 4.4). The attribute functions in conjunction with the following attributes (Table 6.4) expose
numerous measurement (get) and control (set) capabilities to the resource manager.

Table 6.4: Resource Manager, Operating System - Supported Attributes

Attribute Set Type Description
and/or

Get
PWR_ATTR_PSTATE Set/Get uint64 t The current P-state for the object

specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CSTATE Set/Get uint64 t The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CSTATE_LIMIT Set/Get uint64 t The lowest C-state allowed for the
object specified (typically processors
but for use with other component
types when applicable).

PWR_ATTR_SSTATE Set/Get uint64 t The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

Continued on next page

93

Table 6.4 – continued from previous page
Attribute Set Type Description

and/or
Get

PWR_ATTR_POWER Get double Discrete power value in watts. The
power value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_POWER_LIMIT_MIN Set/Get double Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_POWER_LIMIT_MAX Set/Get double Maximum power limit (ceiling, up-
per bound) for the specified object
(as in power cap) in watts.

PWR_ATTR_FREQ Set/Get double The current operating frequency
value for the specified object in Hz
(cycles per second).

PWR_ATTR_FREQ_LIMIT_MIN Set/Get double Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FREQ_LIMIT_MAX Set/Get double Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_ENERGY Get double The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TEMP Get double The current temperature value for the
specified object in degrees Celsius.

94

6.5.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 4.2
– ALL

• Group Functions - section 4.3
– ALL

• Attribute Functions - section 4.4
– ALL

• Metadata Functions - section 4.5
– ALL

• Statistics Functions - section 4.6
– ALL

6.5.3 Supported High-Level (Common) Functions

6.5.4 Interface Specific Functions

95

6.6 Resource Manager, Monitor and Control Interface

The Resource Manager/Monitor and Control Interface is intended to access both low level and
abstracted information from the monitor and control system (if available), much like the Resource
Manager/Operating System Interface (section 6.5). The resource manager is in a somewhat unique
position of providing a range of functionality depending on the specific implementation. The
resource manager role includes functionality such as batch schedulers and allocators as well as
potential portions of tightly integrated runtime and launch systems. The resource manager may
require fairly low level measurement information to make decisions and potentially store historic
information for consumption by the user role (for example). In contrast to the Resource Manager/-
Operating System Interface (section 6.5) this interface includes the capability to mine information
from the Monitor and Control system in situations where the Resource Manager does not retain
historic data itself. The resource manager may also play a very large role in controlling power
and energy pertinent functionally on both a application and platform basis in response to facility
restrictions (power capping or energy aware scheduling for example).

6.6.1 Supported Attributes

A significant amount of functionality for this interface is exposed through the attribute functions
(section 4.4). The attribute functions in conjunction with the following attributes (Table 6.5) expose
numerous measurement (get) and control (set) capabilities to the resource manager.

Table 6.5: Resource Manager, Monitor and Control - Supported Attributes

Attribute Set Type Description
and/or

Get
PWR_ATTR_PSTATE Set/Get uint64 t The current P-state for the object

specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CSTATE Set/Get uint64 t The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CSTATE_LIMIT Set/Get uint64 t The lowest C-state allowed for the
object specified (typically processors
but for use with other component
types when applicable).

Continued on next page

96

Table 6.5 – continued from previous page
Attribute Set Type Description

and/or
Get

PWR_ATTR_SSTATE Set/Get uint64 t The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_POWER Get double Discrete power value in watts. The
power value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_POWER_LIMIT_MIN Set/Get double Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_POWER_LIMIT_MAX Set/Get double Maximum power limit (ceiling, up-
per bound) for the specified object
(as in power cap) in watts.

PWR_ATTR_FREQ Set/Get double The current operating frequency
value for the specified object in Hz
(cycles per second).

PWR_ATTR_FREQ_LIMIT_MIN Set/Get double Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FREQ_LIMIT_MAX Set/Get double Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_ENERGY Get double The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TEMP Get double The current temperature value for the
specified object in degrees Celsius.

97

6.6.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 4.2
– ALL

• Group Functions - section 4.3
– ALL

• Attribute Functions - section 4.4
– ALL

• Metadata Functions - section 4.5
– ALL

• Statistics Functions - section 4.6
– ALL

6.6.3 Supported High-Level (Common) Functions

• Report Functions - section 5.1
– ALL

6.6.4 Interface Specific Functions

98

6.7 Administrator, Monitor and Control Interface

The Administrator/Monitor and Control Interface is intended to expose administrator level mea-
surement and control capabilities to the administrator role for the HPC platform. This interface
assumes that the administrator role has elevated privileges. Additionally, the administrator is as-
sumed to have access to all user role functionality documented in sections 6.10 and 6.4. A full
complement of access to low level information is exposed through the attribute interface and other
core level functions.

6.7.1 Supported Attributes

A significant amount of functionality for this interface is exposed through the attribute functions
(section 4.4). The attribute functions in conjunction with the following attributes (Table 6.6) expose
numerous measurement (get) and control (set) capabilities to the administrator role.

Table 6.6: Monitor and Control, Hardware - Supported Attributes

Attribute Set Type Description
and/or

Get
PWR_ATTR_PSTATE Set/Get uint64 t The current P-state for the object

specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CSTATE Set/Get uint64 t The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CSTATE_LIMIT Set/Get uint64 t The lowest C-state allowed for the
object specified (typically processors
but for use with other component
types when applicable).

PWR_ATTR_SSTATE Set/Get uint64 t The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CURRENT Get double Discrete current value in amps. The
current value should be the value
measured as close as possible to the
time of the function call.

Continued on next page

99

Table 6.6 – continued from previous page
Attribute Set Type Description

and/or
Get

PWR_ATTR_VOLTAGE Get double Discrete voltage value in volts. The
voltage value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_POWER Get double Discrete power value in watts. The
power value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_POWER_LIMIT_MIN Set/Get double Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_POWER_LIMIT_MAX Set/Get double Maximum power limit (ceiling, up-
per bound) for the specified object
(as in power cap) in watts.

PWR_ATTR_FREQ Set/Get double The current operating frequency
value for the specified object in Hz
(cycles per second).

PWR_ATTR_FREQ_LIMIT_MIN Set/Get double Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FREQ_LIMIT_MAX Set/Get double Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_ENERGY Get double The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TEMP Get double The current temperature value for the
specified object in degrees Celsius.

100

6.7.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 4.2
– ALL

• Group Functions - section 4.3
– ALL

• Attribute Functions - section 4.4
– ALL

• Metadata Functions - section 4.5
– ALL

• Statistics Functions - section 4.6
– ALL

6.7.3 Supported High-Level (Common) Functions

• Report Functions - section 5.1
– ALL

6.7.4 Interface Specific Functions

101

6.8 HPCS Manager, Resource Manager Interface

The HPCS Manager/Resource Manager Interface is intended to provide the necessary functionality
for the HPCS Manager to implement policy via the Resource Manager. Policy information such
as power caps (minimums or maximums), per user energy limits and traditional policies like node
hours and priorities will all play a role in energy aware platform scheduling.

6.8.1 Supported Attributes

The Power API specification does not currently recommend that any of the attributes be exposed
to the HPCS Manager role. The implementation is free to expose any attribute they determine is
useful to the user role without violating the specification.

6.8.2 Supported Core (Common) Functions

6.8.3 Supported High-Level (Common) Functions

6.8.4 Interface Specific Functions

102

6.9 Accounting, Monitor and Control Interface

The Accounting/Monitor and Control Interface is intended to support access to power and en-
ergy related information regarding users, jobs and platform details to the accounting role. The
accounting role differs from the user role in part by the elevated permissions this role will typically
have. The accounting role includes interfaces to expose both a low-level interface via the attribute
interface and higher level energy and statistics information through interface specific functions.
The availability of historic information, critical to much of the accounting role, is dependent on
the availability of the information in the Monitor and Control System which is implementation
specific.

6.9.1 Supported Attributes

A significant amount of functionality for this interface is exposed through the attribute functions
(section 4.4). The attribute functions in conjunction with the following attributes (Table 6.7) expose
numerous measurement (get) and control (set) capabilities to the accounting role.

Table 6.7: Accounting, Monitor and Control System - Supported Attributes

Attribute Set Type Description
and/or

Get
PWR_ATTR_PSTATE Set/Get uint64 t The current P-state for the object

specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CSTATE Set/Get uint64 t The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CSTATE_LIMIT Set/Get uint64 t The lowest C-state allowed for the
object specified (typically processors
but for use with other component
types when applicable).

PWR_ATTR_SSTATE Set/Get uint64 t The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

Continued on next page

103

Table 6.7 – continued from previous page
Attribute Set Type Description

and/or
Get

PWR_ATTR_CURRENT Get double Discrete current value in amps. The
current value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_VOLTAGE Get double Discrete voltage value in volts. The
voltage value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_POWER Get double Discrete power value in watts. The
power value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_POWER_LIMIT_MIN Set/Get double Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_POWER_LIMIT_MAX Set/Get double Maximum power limit (ceiling, up-
per bound) for the specified object
(as in power cap) in watts.

PWR_ATTR_FREQ Set/Get double The current operating frequency
value for the specified object in Hz
(cycles per second).

PWR_ATTR_FREQ_LIMIT_MIN Set/Get double Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FREQ_LIMIT_MAX Set/Get double Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_ENERGY Get double The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

Continued on next page

104

Table 6.7 – continued from previous page
Attribute Set Type Description

and/or
Get

PWR_ATTR_TEMP Get double The current temperature value for the
specified object in degrees Celsius.

6.9.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 4.2
– ALL

• Group Functions - section 4.3
– ALL

• Attribute Functions - section 4.4
– ALL

• Metadata Functions - section 4.5
– ALL

• Statistics Functions - section 4.6
– ALL

6.9.3 Supported High-Level (Common) Functions

• Report Functions - section 5.1
– ALL

6.9.4 Interface Specific Functions

105

6.10 User, Monitor and Control Interface

The User/Monitor and Control Interface is intended to support access to power and energy infor-
mation relevant to an HPC user. This interface is similar to the User/Resource Manager Interface
(section 6.4) but exposes more low level information to the user through the Monitor and Control
system, assuming the user has permission to access the information. The low level information
exposed to the user role through this interface is primarily to support fine grained application anal-
ysis when available. The ability to mine energy and other statistics information based on job Id
and user Id, included in this interface, assumes that a data retention capability is implemented in
the Monitor and Control system. This is of course implementation dependent. Alternatively, if the
Monitor and Control system does not have a database capability, the same interfaces are available
to the user role through the User/Resource Manager Interface (section 6.4 which may provide this
functionality.

6.10.1 Supported Attributes

A significant amount of functionality for this interface is exposed through the attribute functions
(section 4.4). The attribute functions in conjunction with the following attributes (Table 6.8) expose
numerous measurement (get) and control (set) capabilities to the user role.

Table 6.8: User, Monitor and Control - Supported Attributes

Attribute Set Type Description
and/or

Get
PWR_ATTR_PSTATE Set/Get uint64 t The current P-state for the object

specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CSTATE Set/Get uint64 t The current C-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_SSTATE Set/Get uint64 t The current S-state for the object
specified (typically processors but
for use with other component types
when applicable).

PWR_ATTR_CURRENT Get double Discrete current value in amps. The
current value should be the value
measured as close as possible to the
time of the function call.

Continued on next page

106

Table 6.8 – continued from previous page
Attribute Set Type Description

and/or
Get

PWR_ATTR_VOLTAGE Get double Discrete voltage value in volts. The
voltage value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_POWER Get double Discrete power value in watts. The
power value should be the value
measured as close as possible to the
time of the function call.

PWR_ATTR_POWER_LIMIT_MIN Set/Get double Minimum power limit (floor, lower
bound) for the specified object in
watts.

PWR_ATTR_POWER_LIMIT_MAX Set/Get double Maximum power limit (ceiling, up-
per bound) for the specified object
(as in power cap) in watts.

PWR_ATTR_FREQ Set/Get double The current operating frequency
value for the specified object in Hz
(cycles per second).

PWR_ATTR_FREQ_LIMIT_MIN Set/Get double Minimum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_FREQ_LIMIT_MAX Set/Get double Maximum operating frequency limit
for the specified object in Hz (cycles
per second).

PWR_ATTR_ENERGY Get double The cumulative energy used by the
specified object in joules. Note that
two attribute get calls are typically
required to obtain the energy con-
sumed by the specified object. Sub-
tracting the energy value obtained
from the first call from the energy
value obtained from the second call
produces the energy used for the ob-
ject from the timestamp of the first
value through the timestamp of the
second value.

PWR_ATTR_TEMP Get double The current temperature value for the
specified object in degrees Celsius.

107

6.10.2 Supported Core (Common) Functions

• Hierarchy Navigation Functions - section 4.2
– ALL

• Group Functions - section 4.3
– ALL

• Attribute Functions - section 4.4
– ALL

• Metadata Functions - section 4.5
– ALL

• Statistics Functions - section 4.6
– ALL

6.10.3 Supported High-Level (Common) Functions

• Report Functions - section 5.1
– ALL

6.10.4 Interface Specific Functions

108

Chapter 7

Conclusion

The case for an HPC-community-adopted power API specification is compelling. The demand for
computational cycles continues to increase, as does the expense to power the cycles. Hardware
vendors are providing interfaces to power data and controls so that software can monitor usage and
even control it. To maximize utilization of these ”knobs”, a portable interface layer allows multiple
software products to code to a generic layer which can be translated by the individual hardware
vendors. With this need in mind, the Power API defined herein sets out to address the following
tenets.

Very wide scope from facility to hardware component This specification is not just limited to
the hardware interfaces. The information from the hardware is the enabler for this API. However,
the information is needed at many levels, from many different viewpoints. In [9] we identified
a discrete set of unique actors (a.k.a. users, which can be software components) communicating
via the API. In turn, these actors have interfaces with one or more systems within the scope of the
API. The actor/system combinations represent the variety of viewpoints. For example, a batch job
scheduler is more likely concerned about overall system and/or node power information, not the
draw of a specific processor core or memory controller.

Portability for software calling the API By grouping the function calls by actor/system com-
bination, we attempted to strike a balance between a totally non-intuitive, but generic get/put
interface and one that is overly prescriptive by focusing on pre-identified and specific software
packages. In addition to the actor/system calls, there is a set of calls to build the system “diagram”
without having to rely on configuration files from a specific system type.

Flexibility for implementer of an API As this is a new area, the specification provides inter-
faces that are adaptable as hardware power technology evolves. The API is not based on any ex-
isting software-specific API. We can envision ways that interfaces such as RAPL, DVFS, NVML,
BGQT/EMON, ACPI, the PAPI power interface, OpenMPI’s hwloc package, etc., etc. can become
implementations for certain actor/system interfaces.

We strived to create a portable, implementable interface for power-aware computing. We wel-
come all suggestions and comments.

109

110

References

[1] R. Bertran, Y. Sugawara, H. M. Jacobson, A. Buyuktosunoglu, and P. Bose. Application-level
power and performance characterization and optimization on IBM Blue Gene/Q systems. In
IBM Journal of Research and Development, volume 57, 2013.

[2] Grady Booch, Ivar Jacobson, and James Rumbaugh. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, 1999.

[3] M. Brocanelli, Sen Li, Xiaorui Wang, and Wei Zhang. Joint management of data centers and
electric vehicles for maximized regulation profits. In Green Computing Conference (IGCC),
2013 International, pages 1–10, June 2013.

[4] Hao Chen, Can Hankendi, Michael C. Caramanis, and Ayse K. Coskun. Dynamic Server
Power Capping for Enabling Data Center Participation in Power Markets. In Proceedings
of the International Conference on Computer-Aided Design, ICCAD ’13, pages 122–129,
Piscataway, NJ, USA, 2013. IEEE Press.

[5] Yuan Chen, D. Gmach, C. Hyser, Zhikui Wang, C. Bash, C. Hoover, and S. Singhal. Inte-
grated management of application performance, power and cooling in data centers. In Net-
work Operations and Management Symposium (NOMS), 2010 IEEE, pages 615–622, April
2010.

[6] Yiannis Georgiou. Energy Accounting and Control on HPC clusters, November 2013.
http://perso.ens-lyon.fr/laurent.lefevre/greendayslille/greendayslille_
Yiannis_Georgiou.pdf.

[7] Yiannis Georgiou, Thomas Cadeau, David Glesser, Danny Auble, Morris Jette, and Matthieu
Hautreux. Energy Accounting and Control with SLURM Resource and Job Management
System. In Mainak Chatterjee, Jian-Nong Cao, Kishore Kothapalli, and Sergio Rajsbaum,
editors, ICDCN, volume 8314 of Lecture Notes in Computer Science, pages 96–118. Springer,
2014.

[8] Ivar Jacobson. Object Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, 1992.

[9] James H Laros, Suzanne M Kelly, Steven Hammond, Ryan Elmore, and Kristin Munch.
Power/Energy Use Cases for High Performance Computing. Internal SAND Report
SAND2013-10789. https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/
UseCase-powapi.pdf.

[10] Zhenhua Liu, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach, Zhikui Wang, Man-
ish Marwah, and Chris Hyser. Renewable and Cooling Aware Workload Management for
Sustainable Data Centers. SIGMETRICS Perform. Eval. Rev., 40(1):175–186, June 2012.

111

[11] Bryan Mills, Ryan E. Grant, Kurt B. Ferreira, and Rolf Riesen. Evaluating Energy Savings
for Checkpoint/Restart. In Proceedings of the 1st International Workshop on Energy Efficient
Supercomputing, E2SC ’13, pages 6:1–6:8, New York, NY, USA, 2013. ACM.

[12] D.K. Newsom, S.F. Azari, A. Anbar, and T. El-Ghazawi. Locality-aware power optimization
and measurement methodology for PGAS workloads on SMP clusters. In Green Computing
Conference (IGCC), 2013 International, pages 1–10, June 2013.

[13] J.U. Patel, S.J. Guercio, A.E. Bruno, M.D. Jones, and T.R. Furlani. Implementing green
technologies and practices in a high performance computing center. In Green Computing
Conference (IGCC), 2013 International, pages 1–8, June 2013.

[14] P.V. Ramakrishna, G. Kaushik, K.L. Sudhakar, G. Thiagarajan, and A. Sivasubramaniam.
Online system for energy assessment in large facilities - Methodology amp; A real-world
case study. In Green Computing Conference (IGCC), 2013 International, pages 1–9, June
2013.

[15] Geri Schneider and Jason Winters. Apply Use Cases: A Practical Guide, Second Edition.
Addison-Wesley, 2001.

[16] Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode. Monitoring power data:
A first step towards a unified energy efficiency evaluation toolset for hpc data centers. Envi-
ronmental Modeling Software, 2013.

[17] Tiffany Trader. Green Power Management Deep Dive. Green Computing Re-
port, June 2013. http://www.greencomputingreport.com/gcr/2013-06-05/green_
power_management_deep_dive.html.

[18] Abhinav Vishnu, Shuaiwen Song, Andres Marquez, Kevin Barker, Darren Kerbyson, Kirk
Cameron, and Pavan Balaji. Designing energy efficient communication runtime systems: a
view from PGAS models. The Journal of Supercomputing, 63(3):691–709, 2013.

[19] Sean Wallace, Venkatram Vishwanath, Susan Coghlan, John Tramm, Zhiling Lan, and
Michael E. Papka. Application Power Profiling on IBM Blue Gene/Q. In Proceedings of
2013 International Conference on Cluster Computing. IEEE, 2013.

[20] V.M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terpstra, and
S. Moore. Measuring Energy and Power with PAPI. In Parallel Processing Workshops
(ICPPW), 2012 41st International Conference on, pages 262–268, Sept 2012.

[21] Xu Yang, Zhou Zhou, Sean Wallace, Zhiling Lan, Wei Tang, Susan Coghlan, and Michael E.
Papka. Integrating Dynamic Pricing of Electricity into Energy Aware Scheduling for HPC
Systems. In Proceedings of SC13: International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’13, pages 60:1–60:11, New York, NY, USA,
2013. ACM.

112

Appendix A

Topics Under Consideration for Future
Versions

The following topics are either currently in active discussion or are planned to be addressed in
future versions of the specification. In some cases it will be necessary to solicit additional feedback
from the community to ensure we properly address the issue in future versions.

• Coexistence of Implementations - One of the driving questions for this future work is -
how does one implementation interface with another? It is possible, even likely that an
implementor will focus on implementing a portion or portions of the specification. This
begs the question of how does implementation A interact with implementation B? Further,
what role does the specification play in driving this interaction? We intend to work closely
with the community to sort out this issue and document the appropriate guidance in the next
version of the specification.

• Language Bindings - Some roles, system administrator for example, more commonly inter-
face with the platform through shells, shell scripting or other interpretive languages like Perl
or Python. We will investigate adding some or all of these capabilities, via specification and
possibly prototypes, in future versions of the standard.

– The next version of the specification will include a complete Python specification of all
existing functions modified appropriately for the Python language

• User Guide - The addition of a user guide could provide additional useful information to
both users and implementors. The addition of a users guide will be considered and if realized
will accompany subsequent releases of the specification.

• Hypothetical System Example - We are considering creating a hypothetical system exam-
ple to use to discuss and clarify concepts and higher level use cases. This will likely be
included in the User Guide.

• Required versus Optional, or Quality of Implementation - We plan to clarify and docu-
ment more precisely what portions of the specification are required to be implemented, what
portions are optional and the definition of a quality implementation. This topic is compli-
cated by the fact that implementors are free to implement portions of the specification.

– Some progress has been made on this topic for version 1.1 but additional work is re-
quired.

• Policies - Security policies, priority of operations and privileges need to be further vetted
and specified when appropriate. This topic has a large amount of intersection with the Coex-

113

istence of Implementations topic and will be considered jointly.
• Unit Tests - Development of a unit test infrastructure is under consideration, possibly to

be associated with our prototype which will be released open source at a later date. Unit
tests might also be a way for the implementation community to assure interaction between
implementations of portions of the specification that will be required to work together.

• User Supplied Functions - We intend to investigate adding the ability for a user to supply a
function for the purposes of generating a statistic, for example.

• Multiple Platform Support - Currently the specification only considers operation on a sin-
gle platform. There is nothing preventing supporting multiple platforms and exposing mul-
tiple platforms in a single context in future versions. This will be considered for the next
release in conjunction with the Coexistence of Implementation issue.

• Generation Counter - We intend to consider the addition of a generation counter capability
to be used in conjunction with counters that have the potential for roll over. The generation
counter could be used to inform the user that this has taken place. This concept likely has
additional utility which is what will be explored for future releases of the specification.
Target: 1.X - Implementation should handle overflow internally

• Time Conversion/Overflow - Time conversion convenience functions are being considered
to convert between PWR_Time values and POSIX-compatible time representations. Included
in this will be methods of detecting overflow during time value arithmetic.

• Context Refresh - We are considering adding the ability to refresh a context int he case of a
long lived context such as one that is used by a persistent daemon. Yet to be resolved is what
happens to existing pointers, more specifically what happens when the user has a pointer to
an object that no longer exists after the refresh, or if this can happen.

• Move Transition Latencies to Metadata - Currently P-state and C-state transition latencies
are returned by PWR_StateTransitDelay. It may be cleaner to move this functionality to a
generalized metadata interface. We will consider making this change in a future version of
the specification.

• Enhanced Support for ACPI 5.0 - Collaborative Processor Performance Control and Con-
tinuous Performance Control are currently not supported. Support will require new attributes
and some function calls to allow for the flexible mechanisms provided in the ACPI 5.0 spec-
ification to allow expression of desired performance on a sliding, abstract unit-less scale.
ACPI 5.0 also supports gathering statistics about the delivery of given performance values
and the time spent in certain states, which we intend to address. We anticipate adding this
support alongside the P-state and C-state functionality already in the Power API in a future
version of the specification.

• User/Resource Manager Interfaces - Work needs to be done in this area but is best ac-
complished in collaboration with resource manager, work load manager experts. We hope to
include standard interfaces for the user to query this system in future versions of the specifi-
cation.

– Work has begun to develop general report and information mining capabilities

• HPCS Manager to Resource Manager Interface - This interface clearly needs some work.
Again it seems that this would benefit greatly from collaborative efforts.

– Work has begun to develop general report and information mining capabilities

114

Appendix B

Change Log

The following list contains changes to version 1.1 of this specification.

• PWR GrpCreate() - Changed - This function no longer requires a user specified name pa-
rameter. The utility of the user specifying a name for user created groups was determined to
be of little value.

• PWR GrpDuplicate() - Changed - This function no longer requires a user specified name.
The utility of the user specifying a name for user created groups was determined to be of
little value.

• PWR GrpGetName() - Removed - This function is no longer necessary due to the changes
made to PWR GrpCreate() and PWR GrpDuplicate().

• PWR GrpUnion() - Added - New function to create a new group which is the union of two
existing groups

• PWR GrpIntersection() - Added - New function to create a new group which is the Intersec-
tion of two existing groups

• PWR GrpDifference() - Added - New function to create a new group which is the difference
of two existing groups

• High Level (Common) Functions - Added - This chapter will contain any high level functions
that are common to multiple Role/System interfaces.

• Report Functions - Added - This section of chapter High Level Functions will contain any
high level report generating functions that are common to multiple Role/System interfaces.

• PWR GetStatByID() - Changed - This function has been changed to PWR GetReportByID()
and added to the Report Functions section of the High Level (Common) Functions chapter.
It requires an additional parameter of the users context. The statTimes parameter has been
changed to ReportTimes and is now of type TimePeriod. The id type parameter has been
changed to type PWR ID.

• PWR GetStatByUser() - Removed - This function was considered an unnecessary abstrac-
tion of PWR GetStatByID() which has been changed to PWR GetReportByID().

115

• PWR GetStatByJob() - Removed - This function was considered an unnecessary abstraction
of PWR GetStatByID() which has been changed to PWR GetReportByID().

• PWR GetEnergyByID() - Removed - This function was considered an unnecessary abstrac-
tion of PWR GetStatByID() which has been changed to PWR GetReportByID().

• PWR GetEnergyByUser() - Removed - This function was considered an unnecessary ab-
straction of PWR GetStatByID() which has been changed to PWR GetReportByID().

• PWR GetEnergyByJob() - Removed - This function was considered an unnecessary abstrac-
tion of PWR GetStatByID() which has been changed to PWR GetReportByID().

• PWR StatGetReduce() - Added - New functionality to preform a reduction (Min, Max, Avg,
etc.) of a requested statistic.

• PWR RET FAILURE - Clarified - Noted that a failure return can be a partial failure, not
necessarily a total failure. This is useful for PWR GrpSetValues and PWR GrpGetValues.

• PWR StateTransitDelay() - Clarified - Removed a discussion on what expected values were
to be as it was not true for all platforms.

• PWR OperState - Changed - Updated PWR OperState to use uint64 t types instead of ints.

• PWR MD TS LATENCY - Typo - Accidentally listed as PWR MD LATENCY in the big
list of attributes

• PWR CntxtGetEntryPoint() - Clarified - Corrected description of function, incorrect in ver-
sion 1.0

• PWR StatID - Changed - Typedef changed to more generic PWR ID

• PWR StatTime - Changed - Typedef changed to more generic PWR TimePeriod

• PWR StatGetValue() - Changed - statTimes parameter now is of time PWR TimePeriod

• PWR StatGetValues() - Changed - statTimes parameter now is of time PWR TimePeriod

• PWR StatStart() - Changed - The stat parameter is now statObj, more descriptive

• PWR StatClear() - Changed - The stat parameter is now statObj, more descriptive

• PWR StatGetValues() - Changed - The stat parameter is now statObj, more descriptive

• Interfaces - Changed - Now called Role/System Interfaces, clarified description

• PWR ATTR THROTTLED TIME - Added - New attribute to get the cumulative time throt-
tled in nanoseconds.

• PWR ATTR THROTTLED COUNT - Added - New attribute to get the cumulative count of
throttle events.

116

• Attribute Get Functions - Changed - Allow NULL to be passed in for timestamp arguments
if no timestamp is required.

• Attribute Get and Set Functions - Clarified - Clarified where values are stored at in input and
output void * arrays. Previously the offset that value i is stored at was unspecified.

• Argument Types - Changed - Changed all occurrences of int to uint64_t.

• Argument Types - Changed - Changed all occurrences of float to double.

• PWR Status - Clarified - Clarified that PWR_Status objects only contain the status of failed
operations. The status of successful operations is not included.

• All functions that return a PWR Status - Clarified that all operations requested by the caller
are attempted at least once (i.e., the PowerAPI does not stop at the first error). Failed opera-
tions have their status returned in the PWR_Status object. All other operations succeeded.

• PWR MAJOR VERSION - Added - Added a compile time constant indicating the major
version of the Power API version supported by the implementation.

• PWR MINOR VERSION - Added - Added a compile time constant indicating the minor
version of the Power API version supported by the implementation.

• PWR RET WARN NOT OPTIMIZED - Added - New warning return code to indicate that
the operation requested was not optimized.

• All Enumeration Types - Added - For each enumeration, added values for INVALID, NOT_-
SPECIFIED, and the count of values defined by the enum.

• PWR ATTR POWER MIN - Changed - Renamed PWR ATTR POWER MIN attribute to
PWR ATTR POWER LIMIT MIN and clarified description.

• PWR ATTR POWER MAX - Changed - Renamed PWR ATTR POWER MAX attribute to
PWR ATTR POWER LIMIT MAX and clarified description.

117

DISTRIBUTION:

1 MS 1319 James A. Ang, 1422
1 MS 1319 All Staff, 1422
1 MS 1319 Ron B. Brightwell, 1423
1 MS 1319 All Staff, 1423
1 MS 0899 Reports Management sanddocs@sandia.gov, 5936
1 MS 0899 Technical Library, 9536 (electronic copy)

118

v1.38

